두툽상어(Scyliorhinus torazame) Cu,Zn-SOD의 분자 계통학적 분석

Molecular Phylogenetic Analyses of Scyliorhinus torazame (Carcharhiniformes) Inferred from Cu,Zn Superoxide Dismutase

  • 김근용 (부경대학교 양식학과.해양수산형질전환생물연구소) ;
  • 남윤권 (부경대학교 양식학과.해양수산형질전환생물연구소)
  • Kim, Keun-Yong (Department of Aquaculture and Institute of Marine Living Modified Organisms (iMLMO), Pukyong National University) ;
  • Nam, Yoon Kwon (Department of Aquaculture and Institute of Marine Living Modified Organisms (iMLMO), Pukyong National University)
  • 투고 : 2006.09.22
  • 심사 : 2006.10.17
  • 발행 : 2006.12.31

초록

두툽상어 (Scyliorhinus torazame)부터 분리된 항산화 효소 Cu,Zn-superoxide dismutase (Cu,Zn-SOD 또는 SOD1)의 핵산 염기서열 및 추정 아미노산 서열을 대상으로 분자 계통학적 분석을 실시하였다. 종래 알려져 있는 척추동물의 Cu,Zn-SOD 서열들을 포함하여 neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) 및 Bayesian 분석 등을 포함한 다양한 계통 분석을 수행하였으며, 이를 통해 연골어류인 본 어종의 척추동물 분류군 내에서의 계통적 위치를 추정하고자 하였다. 다양한 분자 계통수로부터 얻어진 대부분의 consensus tree들에서 분석에 사용한 분류군들은 종래 알려진 분류학적 위치와 비교적 잘 일치하였고, 이중 두툽상어는 같은 연골어류종인 blue shark와 높은 유연관계를 나타내면서 보다 진화한 경골어류들과는 확연히 구분되는 분지를 형성하였다. 특히 핵산 염기서열을 바탕으로 한 neighbor-joining 분석에서 두툽상어는 경골어류와 양막동물에 비해 보다 원시형태의 척추동물 Cu,Zn-SOD 유전자의 한 형태를 보유하고 있는 것으로 나타났다.

Copper,zinc superoxide dismutase (Cu,Zn-SOD) plays a key role to the first antioxidant defense system against oxidative stress in diverse aerobic organisms. Due to the housekeeping action of Cu,Zn-SOD, it was reported that the structure and function have been conserved during evolution. In this study Cu,Zn-SOD from cloudy catshark Scyliorhinus torazame was subjected to phylogenetic analyses to know its evolutionary relationship in the vertebrate lineage. Molecular phylogenetic trees inferred by NJ, MP, ML and/or Bayesian analyses showed two shark species, Prionace glauca and S. torazame grouped together with high statistical supports. In general, they placed at the separated position from bony vertebrates. Thereafter, bony vertebrates composed of teleosts and birds/mammals (amniotes) formed a monophyletic group. Each teleost and amniote clade was also supported by relatively high statistical values. These phylogenetic relationships are well congruent with the phylogenetic hypothesis of the ancestral position of cartilaginous fishes to bony vertebrates.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Environment of Korea

참고문헌

  1. Ayala, F.J. 2000. Neutralism and selectionism: the molecular clock. Gene, 261 : 27-33 https://doi.org/10.1016/S0378-1119(00)00479-0
  2. Calabrese, L., F. Polticelli, P. O'Neill, A. Galtieri, D. Barra, E. Schinina and F. Bosssa. 1989. Substitution of arginine for lysine 134 alters electrostatic parameters of the active site in shark Cu/Zn superoxide dismutase. FEBS Lett., 250 : 49-52 https://doi.org/10.1016/0014-5793(89)80682-9
  3. Cho, J.J., J.H. Lee, S.-K. Kim, T.-J. Choi and Y.T. Kim. 1999. Complementary DNA encoding nm23/NDP kinase gene from the Korean tiger shark Scyliorhinus torazame. Mar. Biotechnol., 1 : 131-136 https://doi.org/10.1007/PL00011760
  4. den Hartog, G.J.M., G.R.M.M. Haenen, E. Vegt, W.J.F. van der Vijgh and A. Bast. 2003. Superoxide dismutase: the balance between prevention and induction of oxidative damage. Chemico-Biol. Interact., 145 : 33-39 https://doi.org/10.1016/S0009-2797(02)00160-6
  5. Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39 : 783-791 https://doi.org/10.2307/2408678
  6. Fukuhara, R., T. Tezuka and T. Kageyama. 2002. Structure, molecular evolution, and expression of primate superoxide dismutases. Gene, 296 : 99-109 https://doi.org/10.1016/S0378-1119(02)00837-5
  7. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser., 41 : 95-98
  8. Huelsenbeck, J.P. and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17 : 754-755 https://doi.org/10.1093/bioinformatics/17.8.754
  9. Johnson, P. 2002. Antioxidant enzyme expression in health and disease: effects of exercise and hypertension. Comp. Biochem. Physiol., 133C : 493-505
  10. Kang, J.A., J.T. Kim, H.S. Song, M.-K. Bae, E.-Y. Yi, K.-W. Kim and Y.-J. Kim. 2003. Anti-angiogenic and antitumor invasive activities of tissue inhibitor of metalloproteinase- 3 from shark, Scyliorhinus torazame. Biochim. Biophys. Acta, 1620 : 59-64
  11. Kikugawa, K., K. Katoh, S. Kuraku, H. Sakurai, O. Ishida, N. Iwabe and T. Miyata. 2004. Basal jawed vertebrate phylogeny inferred from multiple nuclear DNA-coded genes. BMC Biol., 2 : 3
  12. Lee, Y.M., D.J. Friedman and F.J. Ayala. 1985. Superoxide dismutase: an evolutionary puzzle. Proc. Natl. Acad. Sci. USA, 82 : 824-828
  13. Martin, A.P. and S.R. Palumbi. 1993. Protein evolution in different cellular environments: cytochrome b in sharks and mammals. Mol. Biol. Evol., 10 : 873-891
  14. McIntyre, M., D.F. Bohr and A.F. Dominiczak. 1999. Endothelial function in hypertension: the role of superoxide anion. Hypertension, 34 : 539-545
  15. Meyer, A. 1995. Molecular evidence on the origin of tetrapods and the relationships of the coelacanth. Trends Ecol. Evol., 10 : 111-116 https://doi.org/10.1016/S0169-5347(00)89004-7
  16. Moyle, P.B. and J.J. Cech, Jr. 1996. Fishes. An Introduction to Ichthyology. 3rd ed. Prentice-Hall Inc., New Jersey, pp. 1-590
  17. Nam, Y.K., Y.S. Cho, K.-Y. Kim, I.C. Bang, K.H. Kim, S.K. Kim and D.S. Kim. 2006. Characterization of Cu,Zn superoxide dismutase from a cartilaginous shark species, Scyliorhinus torazame (Carcharhiniformes). Fish Physiol. Biochem. (in press)
  18. Nam, Y.K., Y.S. Cho, S.E. Douglas, J.W. Gallant, M.E. Reith and D.S. Kim. 2002. Isolation and transient expression of a cDNA encoding L-gulono-γ-lactone oxidase, a key enzyme for L-ascorbic acid biosynthesis, from the tiger shark Scyliorhinus torazame. Aquaculture, 209 : 271- 284 https://doi.org/10.1016/S0044-8486(01)00731-1
  19. Posada, D. and K.A. Crandall. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics, 14 : 817 -818 https://doi.org/10.1093/bioinformatics/14.9.817
  20. Strimmer, K. and A. von Haeseler. 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Mol. Biol. Evol., 13 : 946-969
  21. Swofford, D.L. 2002. 'PAUP': Phylogenetic Analysis Using Parsimony (and Other Methods). ver 4.0b10. Sinauer Associates, Sunderland, MA
  22. Takezaki, N., F. Figueroa, Z. Zaleska-Rutczynska and J. Klein. 2003. Molecular phylogeny of early vertebrates: monophyly of the agnathans as revealed by sequences of 35 genes. Mol. Biol. Evol., 20 : 287-292 https://doi.org/10.1093/molbev/msg040
  23. Venkatesh, B., M.V. Erdmann and S. Brenner. 2001. Molecular synapomorphies resolve evolutionary relationships of extant jawed vertebrates. Proc. Natl. Acad. Sci. USA, 98 : 11382-11387
  24. Zardoya, R. and A. Meyer. 1996. Evolutionary relation- ships of the coelacanth, lungfishes, and tetrapods based on the 28S ribosomal RNA gene. Proc. Natl. Acad. Sci. USA, 93 : 5449-5454