광섬유 FBG센서를 이용한 원주형 구조물의 2차원 상대변위 모니터링기법 개발

Development of a Convergence Monitoring Method for Cylindrical Structures by Optical Fiber Bragg Grating Sensor

노 병 철^{*} 김 종 우^{**} 강 석 화^{***} Lho, Byeong-Cheol Kim, Jong-Woo Kang, Suck-Hwa

Abstract

Optical Fiber Bragg Grating sensor has a good performance to measure microscopic displacement which can measure strain of lining concrete and cylindrical structure like high intensity containment building and it can present many advantages like a corrosion resistance from the durability point of view. Then it can measure plane geometrical displacement of cylindrical structures with two-way displacement FBG sensor module. According to the test result, measurement of FBG sensor is better performance than other electric sensor system and 2D-level measurement. As a test result, Resolution of the two-way displacement sensor module with FBG sensors are more 10 times than other LVDT or 2D surveying.

요 지

본 연구에서는 광섬유 FBG 센서를 이용, 곡률반경을 고려한 이 방향 변위(Two-Way Displacement)를 측 정하여 변형각을 환산함으로써 상대좌표를 구하는 알고리즘을 정립하였으며 이를 이용하면 작은 변형에 대 해서도 매우정확하게 상대변위를 구할 수 있음을 알 수 있었다. 이를 확인하기 위해 4.5m높이의 H형강에 고 안된 이 방향 광섬유센서를 부착하여 횡 방향으로 외력을 가해서 발생한 변위를 수준측량과 일반적인 전자 식 변위계로 동시에 측정하여 각각의 측정성능을 비교분석하였다. 그 결과, 광섬유센서의 분해능은 다른 센 서시스템에 비해 월등하였으며 이차원 상대좌표의 측정이 가능함을 확인하였다.

Keywords : FBG Sensor, Geometrical Displacement, Tunnel Lining 핵심 용어 : 광섬유 FBG센서, 이방향 변위계측시스템, 변형각 환산, 상대좌표 계측알고리즘

E-mail : bclho@sangji.ac.kr 033-730-0474

• 본 논문에 대한 토의를 2006년 8월 31일까지 학회로 보내 주시면 2006년 11월호에 토론결과를 게재하겠습니다.

^{*} 정회원, 상지대학교 건설시스템공학과 부교수, 공학박사 ** 정회원, (주)에이티맥스 대표이사, 상지대학교 건설시스템공학과 박사과정 *** 정회원, 동양시멘트(주) 연구소장, 공학박사

1. 서 론

최근 국내에서는 지하철 인접구조물의 건설물량이 늘어나면서 지하철의 안전성 확보를 위해 터널라이닝 의 전단면내공변위계측이 활발히 진행되고 있다. 이러 한 원형구조물의 상대변위를 측정하기 위해서는 측량 기법이 유효하나 수동계측이 국한되어 실시간모니터링 이 불가능한 단점이 있다.⁽¹⁾ 또한 전기식 센서를 이용 한 시스템은 구조물의 수축 또는 팽창거동을 확인 할 수 없고 국부적인 변형을 측정하는데 한계를 보이고 있다. 따라서 본 연구에서는 광섬유 FBG 센서를 응 용하여 원자력발전소 격납건물과 같은 원주형구조물에 서 외력에 의한 전체 또는 국부적 팽창, 수축 등의 변 형발생 시 정확한 상대 변형량을 측정할 수 있는 센 서 모듈을 개발하고 이를 모형 구조물에 적용하여 측 정정확도 등 계측성능을 검증하고자 한다.

2. 센서모듈의 개발 및 계측알고리즘

Fiber Bragg Grating(FBG) 센서는 Ge가 첨가된 광섬유 코어에 자외선 영역의 레이저를 주기적으로 조 사함으로써 굴절률 변화를 유도하여 Grating의 주기 에 의해 결정되는 특정 파장의 빛을 반사시키는 광섬 유 격자 소자이다.^{(2),(5)} FBG 센서의 구조 및 측정원 리는 아래의 Fig. 1에 나타내었다.

Fig. 1 FBG센서의 구조 및 측정원리

본 연구에서는 이상의 광섬유 FBG 센서로 고안된 2 방향의 센서패키지를 이용하여 터널의 내공변위를 알 고리즘을 구하였고 여기에는 간단한 삼각함수를 이용 한 계산식이 사용된다.

Fig. 2 상대좌표 환산알고리즘의 개념

즉, Fig. 2에서 터널의 라이닝에 부착된 두개의 부 착점 중 기준고정점을 O, 변형점을 A라고 하고 여기 에 수직으로 부착된 고정 장치의 끝 점을 C라고 하면,

OA = OC, ∠OAC =∠OCA 인△OAC는이등변 삼 각형임을 알 수 있다.

여기에서, AB는 항상 일정한 길이(c)를 가지며 원호 에 직각으로 설치되는 것을 가정하며, AC, BC는 광 섬유 FBG 센서를 이용하여 1/1000mm 정밀도로 정밀 하게 측정하게 된다.

전체 내공변위를 모니터링 하기 위해서는 2차원 평 면에서 부착된 고정 장치의 끝 점 C를 원점으로 하여 임의의 측정 점 B의 위치를 좌표로 표시해야 하며, 이를 위해서는 위 그림에서 ∠ACB=α와 ∠OCB=β를 계 산해야 한다.

삼각형 △ABC의 면적은 식(1)과 같은 헤론의 공식 과 삼각형의 넓이를 구하는 식(2)와 같이 구할 수 있다.

$$S = \sqrt{s(s-a)(s-b)(s-c)}$$
(1)
(\alpha]7]\mathcal{A}, s = \frac{a+b+c}{2})

$$S = \frac{1}{2} ab \times SIN(\alpha)$$
 (2)

두 식을 연립하면 식(3), 식(5)와 같이 *α*, *β*를 구할 수 있다.

$$\angle ACB = \alpha = SIN^{-1} \left(\frac{2S}{ab}\right)$$
 (3)

$$\angle OAC = \alpha + \beta = SIN^{-1} \left(\frac{2S}{bc} \right)$$
 (4)

$$\angle \text{OCB} = \beta = \text{SIN}^{-1} \left(\frac{2S}{bc} \right) - \text{SIN}^{-1} \left(\frac{2S}{ab} \right) (5)$$

따라서 α, β를 이용하여 측정점 A, B의 좌표는 식 (6), 식(7)과 같이 구할 수 있다. 이 때, ∠ACG = ∠ACB+∠OCB=α+β 이다.

$$\overline{CG} = b \times COS(\alpha + \beta) = b \times COS\left(SIN^{-1}\left(\frac{2S}{bc}\right)\right)(6)$$
$$\overline{AG} = b \times SIN(\alpha + \beta) = b \times SIN\left(SIN^{-1}\left(\frac{2S}{bc}\right)\right) (7)$$

그러므로 측정점 A의 좌표는 식(8)과 같이 표현할 수 있다.

$$A(\mathbf{x}, \mathbf{y}) = (\overline{CG}, \overline{AG})$$
(8)
= $\left[b \times COS\left(SIN^{-1}\left(\frac{2.S}{bc}\right)\right), b \times SIN\left(SIN^{-1}\left(\frac{2.S}{bc}\right)\right) \right]$

또한, △BCH에서 ∠BCH = β이며, CH와 BH는 각각 식(9), 식(10)과 같이 구할 수 있다.

$$\overline{CH} = a \times COS(\beta)$$

$$= a \times COS\left(SIN^{-1}\left(\frac{2S}{bc}\right) - SIN^{-1}\left(\frac{2S}{ab}\right)\right)$$
(9)

$$\overline{BH} = a \times SIN(\beta)$$

$$= a \times SIN\left(SIN^{-1}\left(\frac{2S}{bc}\right) - SIN^{-1}\left(\frac{2S}{ab}\right)\right)$$
(10)

즉, 터널의 라이닝이 초기 설치 후 수축 변형을 일 으켜 기준점으로부터 얻어진 라이닝의 곡률변화에 의 해 원호의 중심이 O가 O'으로 이동하며 측정대상인 BC, AC가 각각 B'C, A'C 으로 길이변화를 보이며 그 변화량은 Fig. 3과 같이 △a, △b 로 표시할 수 있다.

Fig. 3 라이닝에서의 변형 후 좌표변화

Table 1 센서 위치별 변화

센서 No	위 치	초기파장 (nm)	설치 후 인장 전(nm)	설치 후 인장 후(nm)	접착제 고정 후(nm)	실험 시작 시(nm)	전체길이 (mm)	센서길이 (mm)
1	1st 하	1533.68	1534.027	1537.203	1536.694	1536.639	1030.30	660.80
2	2nd 하	1539.48	1540.300	1543.196	1543.096	1543.072	1030.55	661.75
3	3rd 하	1548.35	1548.135	1551.110	1551.004	1550.983	1029.15	665.15
4	3rd 상	1542.35	1542.156	1545.430	1545.346	1545.319	1034.20	660.20
5	2nd 상	1559.51	1559.208	1563.174	1563.089	1563.048	1035.35	664.60
6	1st 상	1551.15	1551.031	1554.131	1554.101	1554.089	1035.35	666.10
7	온 도					1536.436		

이 때, AB는 원호에 직각으로 설치되어 있으며 길이 변화가 없다고 가정하였기에 AB = A'B'로 항상 일 정한 길이(c)를 유지하게 된다. 이에 따라서 변화된 측정 점 A', B'의 좌표는 앞에서 증명한 식에 변형 값을 대입 하여 다음의 식(11) 및 식(12)와 같이 계산할 수 있다.

$$B(\mathbf{x}', \mathbf{y}') = (\overline{CH}, \overline{BH})$$

$$= \begin{bmatrix} a \times COS\left(SIN^{-1}\left(\frac{2S}{bc}\right) - SIN^{-1}\left(\frac{2S}{bc}\right)\right), \\ a \times SIN\left(SIN^{-1}\left(\frac{2S}{bc}\right) - SIN^{-1}\left(\frac{2S}{bc}\right)\right) \end{bmatrix}$$

$$A(\mathbf{x}, \mathbf{y}) = (\overline{CG}, \overline{AG})$$

$$= \begin{bmatrix} (b + \triangle b) \times COS\left(SIN^{-1}\left(\frac{2S}{(b + \triangle b)c}\right)\right), \\ (b + \triangle b) \times SIN\left(SIN^{-1}\left(\frac{2S}{(b + \triangle b)c}\right)\right) \end{bmatrix}$$
(11)

$$B(\mathbf{x}', \mathbf{y}') = (CH, BH)$$

$$= \begin{bmatrix} (a + \Delta a) \times COS \begin{pmatrix} SIN^{-1} \left(\frac{2S}{(b + \Delta b)c} \right) \\ -SIN^{-1} \left(\frac{2S}{(a + \Delta a)(b + \Delta b)} \right) \\ SIN^{-1} \left(\frac{2S}{(b + \Delta b)c} \right) \\ -SIN^{-1} \left(\frac{2S}{(a + \Delta a)(b + \Delta b)c} \right) \\ -SIN^{-1} \left(\frac{2S}{(a + \Delta a)(b + \Delta b)} \right) \end{bmatrix}$$
(12)

3. 대상구조물 개요

본 연구의 대상구조물은 Table 2와 Fig. 4에 나타 낸 바와 같이 400mm × 400mm (t=20mm)의 H형 강으로써 높이는 4.5m인 가상 구조물이다. 또한, Fig. 5와 같이 비교·검증을 위한 계측 장비를 설치하 였다. 이때 각 부착된 FBG센서의 Grating간격을 의 미하는 초기파장은 각각 1533.68~1551.15nm의 범 위이며 각 단계별 파장의 변화는 Table 1에 나타내었 다. 온도보상을 위해 사용된 온도측정용 FBG는 순수 한 온도변화에 의한 변형을 측정하기 위한 것으로 실 험시작 시 설치했으며 다른 모든 측정용 FBG센서의 과장변화에서 이 값을 빼줌으로써 각 측정센서에서 온 도변화에 의한 과장변화량이 제거되도록 하였다.

Table 2 대상구조물 개요

센서종류	개수 및 표시기호
광섬유 내공변위계	SET 01 ~ 03
LVDT	LVDT 01 \sim 03
스트레인게이지 (Steel용 120요)	스트레인게이지 01 ~ 03
2차원 측량 타겟	① ~ ⑦

4. 결과분석

센서 전체 길이 및 게이지 길이를 정확히 측정할 수 없었기 때문에 초기치 센서 길이를 센서하부(밑변) 및 상부(빗변)의 전체길이는 각각 1030.30mm, 1035.14 mm으로 가정하여 결과분석에 사용하였다. 1차 실험 은 9mm의 횡 변위가 발생하도록 H형강을 가력하여 광섬유센서에서의 변위신호를 측정하였으며, 그 결과 는 Fig. 6~Fig. 7에 나타낸 바와 같이 유압잭을 사 용한 Actuator로 가력한 후 원하는 하중에 도달하기 까지 불안정한 상태를 거치게 되는데 이러한 이유 때 문에 가력즉시 정확한 하중도달이 되지 않으며 이러한 미세한 변형을 일으키게 된다.

2단계시험에서는 1.0mm~1.5mm 간격으로 최대 9mm까지 변위가 일어나도록 단계별로 가력하였고, 이때의 변위량을 3차원 수준 측량 값과 일방향 LVDT 를 통해 측정하여 제안한 광섬유센서의 측정값과 비교

Fig. 7 9mm가력 시 A, B, C 세 점의 y좌표변위

Table 3 측량결과 (단위 : m, x 좌표)

1	2	3	4	5	6	7
가력점	С	В	기준점	А	OA 중간점	0
0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.009	0.009	0.006	0.003	0.004	0.002	0.001

하였다.

이때 측량에 의해 얻어진 좌표는 Table 3에 나타내 었는데 유효측정 분해능은 mm로 광섬유 FBG센서에 비해 상대적으로 커서 직접비교가 곤란하여 하중단계 별 FBG센서와 LVDT센서에서 얻어지는 변형의 발생 경향을 비교하는데 사용하였다.

Fig. 8에서와 같이 각 측정결과는 다소간의 차이를 보이고 있으나 하중단계별 변위이력의 경향은 동일한 것으로 나타났다. 그러나 y방향의 변위는 계측할 수 없어 광섬유센서 데이터만을 Fig. 9에 나타내었다.

Fig. 8 단계별 9mm가력 시 A, B, C 세 점의 x좌표변위

Fig. 9 단계별 9mm가력 시 A, B, C 세 점의 y좌표변위

데이터를 살펴보면, 특별한 기구를 설치하지 않고 일반적인 부착방법을 사용할 때 유일하게 이 방향 광 섬유센서로 구성된 상대좌표측정시스템만이 x, y방향 의 변위를 모두 측정할 수 있는 것으로 나타났다. 계 측정확도의 분석은 참값을 알 수 없고 측정분해능의 차이가 커서 하중에 의한 변위의 변화추이 비교만이 가능하였으며 이러한 비교결과 분해능 또한 전자식 센 서인 LVDT보다 약 100배정도 우수하여 미세한 변위 의 계측에 매우 유용함을 알 수 있다.

3단계는 1~1.5mm 간격으로 20mm까지 변위가 생기도록 재하속도를 증가시켜 가력하면서 각 하중단계 별 센서민감도 및 측정범위를 확인하였다.

그러나 연속적으로 가력 할 경우 유압가력장치의 기 계적 떨림으로 인해 변위데이터도 동일한 떨림이 발생 하게 된다. 하중 증감에 따른 변위데이터의 전체적인 경향은 가압에 따라 Fig. 10~ Fig. 11에 나타낸 바 와 같이 가력 한 하중에 따라 거동하며 각 단계에서는 미세한 떨림 현상까지도 반영되어 나타나고 있다.

Fig. 10 단계별 9mm가력 시 A, B, C 세 점의 x좌표변위

그 결과, 광섬유FBG 센서의 x, y방향의 좌표변화 는 Table 4에서 보는 바와 같이 가력에 의한 변위를 충분히 반영하는 경향을 나타내는 결과를 얻었으며, 가력속도에 의한 광섬유센서의 계측분해능은 1/1000 mm로 측량의 경우 1mm, LVDT이 1/100mm인데 비하여 매우 우수한 것으로 판단된다.

그러나 Table 4에서 알 수 있듯이 원점과 가장 가 까운 A점에서는 측량 값과 FBG센서의 측정값이 1.095mm로 B, C점에서의 0.058mm, 0.046mm에 비해 다소 큰 차이를 보이는 것을 알 수 있다.

이는 고안된 센서 패키지의 측정원리가 곡선구조물 에서 적용가능 하도록 구성된 것과 달리 시험편은 직 선인 기둥형태이어서 상대적으로 곡률변화가 적은 A 점에서의 오차가 커진 것으로 판단된다.

따라서 본 연구에서 제안된 광섬유 FBG 센서패키 지는 원주형구조물의 상대좌표를 측정하는데 보다 유 용함을 알 수 있다

Fig. 11 단계별 9mm가력 시 A, B, C 세 점의 y좌표변위

		9mm 가력 후									
가력 전							초라가				
		9mm	가력 후	변화량		비고버이치시	LVDI 紙		一で伝		
	x 좌표	y 좌표	x 좌표	y 좌표	х	У	대중면취완산	x 좌표	y 좌표	x 좌표	y 좌표
Α	0	1030.30	2.904	1030.211	2.904	-0.089	2.905	3.12	*	4	1029.30
В	0	2060.60	5.940	2060.459	5.940	- 0.141	5.942	5.94	*	6	2059.60
С	0	3090.90	9.044	3090.731	9.044	- 0.169	9.046	9.01	*	9	3090.90

Table 4 절대좌표 환산 결과 (단위 : mm)

5. 결 론

이상의 연구를 통해 얻어진 결론은 다음과 같다.

- 광섬유 FBG센서를 이용하여 이방향의 길이측정을 통하여 변형각을 환산하는 알고리즘의 구현이 가능 하며 이를 이용하면 원주형 구조물의 미세한 변위 를 측정할 때 매우 유효함을 확인하였다.
- 2) 광섬유 센서의 초기 설치시공 시 지그의 수직, 수 평이 맞지 않을 경우 전체적인 좌표환산시의 오차 로 나타나게 된다. 따라서 향후 이를 이용한 구조 물의 상대좌표를 모니터링 하고자 할 경우에는 정 밀도가 높은 3차원 변위 측정을 통해서 초기치를 입력하는 것이 필요하다.
- 3) 본 연구결과의 정확한 분석을 위해서는 정확한 2차 원상의 좌표이동 값을 비교할 수 있는 센서가 필요 했으나 측량의 경우에는 정밀도가 낮아서 참값을 알 수 없는 상태였고 LVDT의 경우, 우선 2차원 값을 비교할 수 없을 뿐만 아니라, 한 방향(x방향) 의 측정 정밀도도 0.01mm인 것으로 제시되어, 설치상의 오차 및 가력중간의 접점 이동 등 오차 요인을 내포하고 있어 광섬유센서와의 직접비교는 곤란하였다.
- 4) 본 연구에서 개발된 이 방향 광섬유FBG센서 패키 지는 직선구조물과 같이 상대적인 변위가 작을 경 우 오차가 커짐을 알 수 있었고 제안된 측정알고리 즘은 곡률변화가 있는 원주형구조물 등에서 유효함 을 알 수 있다.
- 5) 본 실험을 통해서 크기 축소를 위한 개선뿐만 아니 라 광섬유 케이블 보호 방안, 센서 인장장치 등의 추가적인 개선점을 발견하였으며, 실제 시공 시편 의성을 위해서 센서패키지 등의 개선이 필요한 것 으로 사료된다.

감사의 글

본 논문은 2005년도 상지대학교 교내연구비 지원에 의하 여 연구되었으며, 이에 깊은 감사를 드립니다.

참고문헌

- 한일영, 방준호 무선 인터넷 데이터 통신을 이용한 터 널 유지관리 내공변위 계측시스템 2003 대한토목학회지 제51권 제4호 통권 제276호 (2003. 4) pp.57-61.
- 김기수, 이호준, 김종우, "광섬유센서를 이용한 유지관 리모니터링기술", 콘크리트학회지, 제12권.
- 터널 시공 및 유지관리 단계 내공변위 계측시스템 적용 사례 연구 / 이대혁 外著 2000 터널기술 : 제2권 제3 호 (2000. 12) pp.59-69.
- 조선정, 광섬유 브래그격자 센서를 이용한 교량의 유지 관리용 스마트 모니터링 계측 시스템 개발 원광대 대학 원 2003, 183.
- 5. 박기태, 광섬유센서를 이용한 교량구조물 계측, 2003. 建設技術情報 통권 제237호(2003.8) pp.26-33.
- Kin-tak Lau, Libo Yuan, Li-min Zhou, Jingshen Wu, Chung-ho Woo, "Strain monitoring in FRP laminates and concrete beam using FBG", ELSEVIER, Composite Structure, 2001, pp 9–20.
- C. Allen Ross, David M Jerome, Joseph W Tedesco, Mary L Hughes, "Strengthening of Reinforced Concrete Beams With Externally Bonded Composite Laminates", ACI STRUCTURAL JOURNAL, No 96–S23, 1999, pp.212–220.
- O. Rabinovich and Y. Frostig, "Nonlinear High Order Analysis of Cracked RC Beams Strengthened with FRP Strips", JOURNAL OF ENGINEERING, April 2001, pp 381–389.

급행(접수일자:2006년 2월 10일)