Air-side Heat Transfer and Friction Characteristics of Fined-tube Heat Exchangers under Heating Condition

핀-관 열교환기의 난방운전 시 공기측 열전달 및 마찰특성

  • Received : 2006.06.05
  • Accepted : 2006.08.16
  • Published : 2006.10.10

Abstract

An experimental study has been performed to investigate the characteristics of air-side heat transfer and friction of a fined tube heat exchanger under heating conditions. Air enthalpy calorimeter was used to obtain the performance evaluation and analysis of the fined tube heat exchanger. Eight finned tube heat exchangers with slit fin, louver fin, and plain fin were used. The air-side heat transfer coefficient was calculated by the log-mean-temperature-difference. Air-side heat transfer and friction were presented in terms of j factor and friction factor on Reynolds number. From the experimental result, it was found that the variations of air-side heat transfer and friction of fined tube heat exchanger with the change of the fin configuration, row number, fin pitch, and tube circuit were obtained. j factor and friction factor decreased with Reynolds number increased. The tube circuit affected the air-side heat transfer and friction. In the case of slit and louver fin, j factor of 1st row was higher than that of 2nd row. But, with increasing Re, j factor was reversed. The characteristics of j factor and friction factor of 2nd row heat exchanger were different according to the kind of fins.

본 연구에서는 핀-관 열교환기의 공기측 열전달 및 마찰특성을 조사하기 위하여 8종의 열교환기에 대하여 난방조건에서 실험을 수행하였다. 핀-관 열교환기의 성능 비교평가를 위하여 공기엔탈피식 칼로리미터를 이용하였다. 실험에 사용된 핀은 슬릿, 루버, 평판형이며, 관경은 7.0 mm, 열수는 1, 2, 3열 그리고 4종의 관회로에 대해 j 계수와 마찰계수를 획득하였다. 실험을 통해서 핀형상, 핀피치, 열수 그리고 관회로의 변화에 대한 핀-관 열교환기의 공기측 열전달 및 마찰거동을 조사하였다. 실험결과는 관회로의 구성이 열교환기의 열전달과 마찰과 관련이 있음을 보여주었다. 동일 핀피치의 열교환기의 경우에 저 Re 수에서는 1열의 열전달성능이 우수하나 Re 수가 증가할수록 j 계수의 거동은 역전함을 보였다. 그리고 2열의 열교환기에서 핀종류에 따라 공기측 열전달성능과 마찰계수가 다르게 나타남을 확인하였다.

Keywords

References

  1. F. C. McQiston, ASHRAE Transactions, 84, 266 (1978)
  2. D. L. Gray and R. L. Webb, Proceeding of 8th Int. Heat Transfer Conference, 2745 (1986)
  3. W. Nakayama and L. P. Xu, 1st ASME/JSME. Thermal Engineering Joint Conference, 495 (1983)
  4. C. C. Wang, W. H. Tao, C. J. Chang, Int. J. of Refrigeration, 22, 595 (1999) https://doi.org/10.1016/S0140-7007(99)00031-6
  5. D. G. Rich, ASHRAE Transactions, 79, 135 (1973)
  6. F. Halici, I. Taymaz, and M. Gunduz, Energy, 26, 963 (2001) https://doi.org/10.1016/S0360-5442(01)00048-2
  7. B. Youn, Y. S. Kim, and H. Y. Park, Air-conditioning and Refrigeration Engineering, 25, 151 (1996)
  8. RRC, Report (2005)
  9. S. Sawai, T. Hayashi, Y. Ohtake, and T. Takei, Refrigeration, 41, 15 (1969)
  10. V. Gnielinski, Int. Chem. Engineering, 16, 359 (1976)
  11. T. E. Schmidt, Journal of ASRE, 4, 351 (1949)
  12. X. Hu and A. M. Jacobi, Journal of Heat Transfer, 115, 66 (1993) https://doi.org/10.1115/1.2910671
  13. F. E. M. Saboya and E. M. Sparrow, Transactions of the ASME., 96, 265 (1974) https://doi.org/10.1115/1.3450189