Effects of Multiple-Cycle Operation and SO2 Concentration on CO2 Capture Capacity of Three Limestones in a Fluidized Bed Reactor

유동층 반응기에서 세 가지 석회석의 CO2 흡수능력에 미치는 반복횟수와 SO2 농도의 영향

  • Ryu, Ho-Jung (Clean Energy Research Center, Korea Institute of Energy Research)
  • 류호정 (한국에너지기술연구원 청정에너지연구센터)
  • Received : 2005.09.08
  • Accepted : 2005.12.19
  • Published : 2006.02.10

Abstract

Effects of multiple-cycle operation and $SO_2$ concentration on $CO_2$ capture characteristics of three limestones were investigated in a fluidized bed reactor. For each of these sorbents, the measured $CO_2$ capture capacity decreased as the number of cycles increased and as the $SO_2$ concentration increased. On the other hand, the $SO_2$ capture increased with the increased number of cycles and the $SO_2$ concentration. The total calcium utilization decreased as the number of cycles increased, but the effect of $SO_2$ concentrations on the total calcium utilization depended on the type of limestone. For Strassburg limestone, the total calcium utillization decreased with increasing $SO_2$ concentration. However, for Luscar and Danyang limestones, the total calcium utilization was almost independent of $SO_2$ concentration for the range investigated. The results showed that $SO_2$ in flue gas reduced the $CO_2$ capture capacity of limestone and that the sulfation pattern affected the $CO_2$ capture capacity.

유동층 반응기에서 세 가지 석회석의 $CO_2$ 흡수능력에 미치는 반복횟수와 $SO_2$ 농도의 영향을 연구하였다. 측정된 $CO_2$ 흡수능력은 반복횟수가 증가하고 $SO_2$ 농도가 증가함에 따라 감소하였다. 한편 $SO_2$ 흡수능력은 반복횟수와 $SO_2$ 농도가 증가함에 따라 증가하였다. 총괄칼슘이용률은 반복횟수가 증가함에 따라 감소하였으나 총괄칼슘이용률에 대한 $SO_2$ 농도의 영향은 석회석의 종류에 따라 다른 경향을 나타내었다. Strassburg 석회석의 경우 총괄칼슘 이용률은 $SO_2$ 농도가 증가함에 따라 감소하는 반면, Luscar 및 단양 석회석의 경우에는 본 연구의 실험범위 내에서 $SO_2$ 농도에 무관한 경향을 나타내었다. 본 연구의 실험결과에 의하면 연소배가스 중 $SO_2$의 존재는 석회석의 $CO_2$ 흡수능력을 감소시키며 석회석의 황하반응 경향이 $CO_2$ 흡수능력에 영향을 미치는 것으로 나타났다.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. 류호정, ETIS 분석지, 제15권, 한국에너지기술연구원, 76 (2001)
  2. IEA Greenhouse Gas R&D Programme Report: 'Greenhouse Gas Emissions from Power Stations', available on http://www.ieagreen.org.uk/srlp.htm
  3. IEA Greenhouse Gas R&D Programme Report: 'Carbon Dioxide Capture from the Power Stations' available on http://www.ieagreen.org.uk/sr2p.htm
  4. C. Salvador, D. Lu, E. J. Anthony, and J. C. Abanades, Chem. Eng. J., 96, 187 (2003) https://doi.org/10.1016/j.cej.2003.08.011
  5. G. P. Curran, C. E. Fink, and E. Gorin, Adv. Chem. Ser., 69, 141 (1967) https://doi.org/10.1021/ba-1967-0069.ch010
  6. R. Barker, J. Appl. Chem. Biotechnol., 23, 733 (1973) https://doi.org/10.1002/jctb.5020231005
  7. A. Silaban, M. Narcida, and D. P. Harrison, Chem. Eng. Comm., 146, 149 (1996) https://doi.org/10.1080/00986449608936487
  8. T. Shimizu, T. Hirama, H. Hosoda, K. Kitano, M. Inagaki, and K. Tejima, Trans IChemE, 77, Part A, 62 (1999)
  9. M. Aihara, T. Nagai, J. Matsushita, Y. Negishi, and H. Ohya, Applied Energy, 69, 225 (2001) https://doi.org/10.1016/S0306-2619(00)00072-6
  10. J. C. Abanades, Chem. Eng. J., 90, 303 (2002) https://doi.org/10.1016/S1385-8947(02)00126-2
  11. E. H. Barker, J. Chem. Soc. 464 (1962) https://doi.org/10.1039/jr9620000464
  12. A. Silaban and P. Harrison, Chem. Eng. Comm., 137, 177 (1995) https://doi.org/10.1080/00986449508936375
  13. J. C. Abanades and D. Alvarez, Energy and Fuels, 17, 308 (2003) https://doi.org/10.1021/ef020152a
  14. K. Laursen, W. Duo, J. R. Grace, and C. J. Lim, Fuel, 79, 153 (2000) https://doi.org/10.1016/S0016-2361(99)00147-7
  15. K. Laursen, W. Duo, J. R. Grace, and C. J. Lim, Fuel, 80, 1293 (2001) https://doi.org/10.1016/S0016-2361(01)00011-4
  16. W. Duo, K. Laursen, C. J. Lim, and J. R. Grace, Ind. Eng. Chem. Res., 43, 5653 (2004) https://doi.org/10.1021/ie030837d