Regulation of NFAT Activation: a Potential Therapeutic Target for Immunosuppression

  • Lee, Mina (Department of Biotechnology, Hankuk University of Foreign Studies) ;
  • Park, Jungchan (Department of Biotechnology, Hankuk University of Foreign Studies)
  • Received : 2006.08.07
  • Accepted : 2006.08.10
  • Published : 2006.08.31

Abstract

The NFAT family of transcription factors plays pivotal roles in the development and function of the immune system. Their activation process is tightly regulated by calcium-dependent phosphatase calcineurin and has been a target of the immunosuppressive drugs cyclosporin A and FK-506. Although the clinical use of these drugs has dramatically increased the success of organ transplantation, their therapeutic use is limited by severe side effects. Recent studies for the calcineurin/NFAT signaling pathway have identified a number of cellular proteins that inhibit calcineurin function. Specific peptide sequences that interfere with the interaction between calcineurin and NFAT have also been characterized. Moreover, diverse approaches to identify small organic molecules that modulate NFAT function have been performed. This review focuses on the recent advances in our understanding of the inhibitory modulation of NFAT function, which may open up the additional avenues for immunosuppressive therapy.

Keywords

Acknowledgement

Supported by : ITEP

References

  1. Aceves, M., Duenas, A., Gomez, C., San Vicente, E., Crespo, M. S., et al. (2004) New pharmacological effect of salicylates:inhibition of NFAT-dependent transcription. J. Immunol. 173, 5721−5729
  2. Aspeslet, L., Freitag, D., Trepanier, D., Abel, M., Naicker, S., et al. (2001) ISA(TX)247: a novel calcineurin inhibitor. Transplant. Proc. 33, 1048−1051
  3. Aramburu, J., Garcia-Cozar, F., Raghavan, A., Okamura, H., Rao, A., et al. (1998) Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol. Cell 1, 6127−6137
  4. Aramburu, J., Yaffe, M. B., Lopez-Rodriguez, C., Cantley, L. C., Hogan, P. G., et al. (1999) Affinity-driven peptide selection of an NFAT inhibitor more selective than cyclosporin A. Science 285, 2129−2133. https://doi.org/10.1126/science.285.5436.2129
  5. Arron, J. R., Winslow, M. M., Polleri, A., Chang, C. P., Wu, H., et al. (2006) NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441, 595-600 https://doi.org/10.1038/nature04678
  6. Bae, S. J., Oum, J. H., Sharma, S., Park, J., and Lee, S. W. (2002) In vitro selection of specific RNA inhibitors of NFATc. Biochem. Biophys. Res. Commun. 298, 486−492
  7. Baine, Y., Stankunas, B. M., Miller, P., Hobbs, C., Tiberio, L., et al. (1995) Functional characterization of novel IL-2 transcriptional inhibitors. J. Immunol. 154, 3667−3677
  8. Beals, C. R., Sheridan, C. M., Turck, C. W., Gardner, P., and Crabtree, G. R. (1997) Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930−1934 https://doi.org/10.1126/science.275.5308.1930
  9. Castigli, E., Pahwa, R., Good, R. A., Geha, R. S., and Chatila, T. A. (1993) Molecular basis of a multiple lymphokine deficiency in a patient with severe combined immunodeficiency. Proc. Natl. Acad. Sci. USA 90, 4728−4732
  10. Cho, J. S., Lee, Y. J., Shin, K. S., Jeong, S., Park, J., et al. (2004) In vitro selection of specific RNA aptamers for the NFAT DNA binding domain. Mol. Cells 18, 17−23
  11. Chow, C. W., Rincon, M., Cavanagh, J., Dickens, M., and Davis, R. J. (1997) Nuclear accumulation of NFAT4 opposed by the JNK signal transduction pathway. Science 278, 1638–1641
  12. Chuvpilo, S., Avots, A., Berberich-Siebelt, F., Glockner, J., Fischer, C., et al. (1999) Multiple NF-ATc isoforms with individual transcriptional properties are synthesized in T lymphocytes. J. Immunol. 162, 7294–7301
  13. Coghlan, V. M., Perrino, B. A., Howard, M., Langeberg, L. K., Hicks, J. B., et al. (1995) Association of protein kinase A and protein phosphatase 2B with a common anchoring protein. Science 267, 108–111
  14. Crabtree, G. R. and Olson, E. N. (2002) NFAT signaling: choreographing the social lives of cells. Cell 109, S67–S79
  15. Dell'Acqua, M. L., Dodge, K. L., Tavalin, S. J., and Scott, J. D. (2002) Mapping the protein phosphatase-2B anchoring site on AKAP79. Binding and inhibition of phosphatase activity are mediated by residues 315−360. J. Biol. Chem. 26, 48796−48802
  16. Djuric, S. W., BaMaung, N. Y., Basha, A., Liu, H., Luly, J. R., et al. (2000) 3,5-Bis(trifluoromethyl) pyrazoles: a novel class of NFAT transcription factor regulator. J. Med. Chem. 43, 2975−2981
  17. Dumont, F. J. (2000) FK506, an immunosuppressant targeting calcineurin function Curr. Med. Chem. 7, 731−748
  18. Esau, C., Boes, M., Youn, H. D., Tatterson, L., Liu, J. O., et al. (2001) Deletion of calcineurin and myocyte enhancer factor 2 (MEF2) binding domain of Cabin1 results in enhanced cytokine gene expression in T cells. J. Exp. Med. 194, 1449−1459 https://doi.org/10.1084/jem.194.1.1
  19. Feske, S., Muller, J. M., Graf, D., Kroczek, R. A., Drager, R., et al. (1996) Severe combined immunodeficiency due to defective binding of the nuclear factor of activated T cells in T lymphocytes of two male siblings. Eur. J. Immunol. 26, 2119−2126
  20. Feske, S., Giltnane, J., Dolmetsch, R., Staudt, L. M., and Rao, A. (2001) Gene regulation mediated by calcium signals in T lymphocytes. Nat. Immunol. 2, 316-324 https://doi.org/10.1038/86318
  21. Feske, S., Okamur, H., Hogan, P. G., and Rao, A. (2003) $Ca^{2+}$/calcineurin signalling in cells of the immune system. Biochem. Biophys. Res. Commun. 311, 1117−1132 https://doi.org/10.1016/j.bbrc.2003.09.106
  22. Go, W. Y., Liu, X., Roti, M. A., Liu, F., and Ho, S. N. (2004) NFAT5/TonEBP mutant mice define osmotic stress as a critical feature of the lymphoid microenvironment. Proc. Natl. Acad. Sci. USA 101, 10673–10678
  23. Gomez del Arco, P., Martinez-Martinez, S., Maldonado, J. L., Ortega-Perez, I., and Redondo, J. M. (2000) A role for the p38 MAP kinase pathway in the nuclear shuttling of NFATp. J. Biol. Chem. 275, 13872–13878 https://doi.org/10.1074/jbc.275.18.13872
  24. Gwack, Y., Sharma, S., Nardone, J., Tanasa, B., Iuga, A., et al. (2006) A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646-650 https://doi.org/10.1038/nature04631
  25. Hogan, P. G., Chen, L., Nardone, J., and Rao, A. (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205-2232 https://doi.org/10.1101/gad.1102703
  26. Imamura, R., Masuda, E. S., Naito, Y., Imai, S., Fujino, T., et al. (1998) Carboxyl-terminal 15-amino acid sequence of NFATx1 is possibly created by tissue-specific splicing and is essential for transactivation activity in T cells. J. Immunol. 161, 3455–3463
  27. Kaini, A., Rao, A., and Aramburu, J. (2000) Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12, 359−372
  28. Kingsbury, T. J. and Cunningham, K. W. (2000) A conserved family of calcineurin regulators Genes Dev. 14, 1595−1604
  29. Kuromitsu, S., Fukunag, M., Lennard, A. C., Masuho, Y., and Nakada, S. (1997) 3-(13-Hydroxytridecyl)-1-[13-(3-pyridyl) tridecyl]pyridinium chloride (YM-53792), a novel inhibitor of NF-AT activation. Biochem. Pharmacol. 54, 999−1005 https://doi.org/10.1016/S0006-2952(97)00193-7
  30. Lin, X., Sikkink, R. A., Rusnak, F., and Barber, D. L. (1999) Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein. J. Biol. Chem. 274, 36125-36131 https://doi.org/10.1074/jbc.274.51.36125
  31. Luo, C., Burgeon, E., Carew, J. A., Badalian, T. M., McCaffrey, P. G., et al. (1996) Recombinant NFAT1 (NFATp) is regulated by calcineurin in T cells and mediates transcription of several cytokine genes. Mol. Cell. Biol. 16, 3955–3966 https://doi.org/10.1016/S1569-2558(08)60061-2
  32. Macian, F. (2005) NFAT proteins: key regulators of T-cell development and function. Nat. Rev. Immunol. 5, 472−484 https://doi.org/10.1038/nri1632
  33. Martinez-Martinez, S. and Redondo, J. M. (2004) Inhibitors of the calcineurin/NFAT pathway. Cur. Med. Chem. 11, 997−1007
  34. Martinez-Martinez, S., Gomez del Arco, P., Armesilla, A. L., Aramburu, J., Luo, C., et al. (1997) Blockade of T-cell activation by dithiocarbamates involves novel mechanisms of inhibition of nuclear factor of activated T cells. Mol. Cell. Biol. 17, 6437−6447
  35. Martinez-Martinez, S., Rodrigue, A., Lopez-Maderuelo, M. D., Ortega-Perez, I., Vazque, J., et al. (2006) Blockade of NFAT activation by the second calcineurin binding site. J. Biol. Chem. 281, 6227−6235
  36. Miskin, J. E., Abrams, C. C., Goatley, L. C., and Dixon, L. K. (1998) A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281, 562−565
  37. Miskin, J. E., Abrams, C. C., and Dixon, L. K. (2000) African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT. J. Virol. 74, 9412−9420
  38. Miyakawa, H., Woo, S. K., Dahl, S. C., Handler, J. S., and Kwon, H. M. (1999) Tonicity-responsive enhancer binding protein, a Rel-like protein that stimulates transcription in response to hypertonicity. Proc. Natl Acad. Sci. USA 96, 2538− 2542
  39. Nghiem, P., Pearson, G., and Langley, R. G. (2002) Tacrolimus and pimecrolimus: from clever prokaryotes to inhibiting calcineurin and treating atopic dermatitis. J. Am. Acad. Dermatol. 46, 228−241 https://doi.org/10.1067/mjd.2002.120568
  40. Noguchi, H., Matsushita, M., Okitsu, T., Moriwaki, A., Tomizaw, K., et al. (2004) A new cell-permeable peptide allows successful allogeneic islet transplantation in mice. Nat. Med. 10, 305-309 https://doi.org/10.1038/nm994
  41. Okamura, H., Garcia-Rodriguez, C., Martinson, H., Qin, J., Virshup, D. M., et al. (2004) A conserved docking motif for CK1 binding controls the nuclear localization of NFAT1. Mol. Cell. Biol. 24, 4184–4195 https://doi.org/10.1128/MCB.24.1.1-13.2004
  42. Park, J., Takeuchi, A., and Sharma, S. (1996) Characterization of a new isoform of the NFAT (nuclear factor of activated T cells) gene family member NFATc. J. Biol. Chem. 271, 20914–20921
  43. Park, S., Uesugi, M., and Verdine, G. L. (2000) A second calcineurin binding site on the NFAT regulatory domain Proc. Natl. Acad. Sci. USA 97, 7130−7135
  44. Peng, S. L., Gerth, A. J., Ranger, A. M., and Glimcher, L. H. (2001) NFATc1 and NFATc2 together control both T and B cell activation and differentiation. Immunity 14, 13−20 https://doi.org/10.1016/S1074-7613(01)00084-X
  45. Rao, A., Luo, C., and Hogan, P. G. (1997) Transcription factors of the NFAT family: Regulation and Function. Annu. Rev. Immunol. 15, 707−747
  46. Rodriguez, A., Martinez-Martinez, S., Lopez-Maderuelo, M. D., Ortega-Perez, I., and Redondo, J. M. (2005) The linker region joining the catalytic and the regulatory domains of can is essential for binding to NFAT. J. Biol. Chem. 280, 9980− 9984 https://doi.org/10.1074/jbc.C400401200
  47. Roehrl, M. H., Kang, S., Aramburu, J., Wagner, G., Rao, A., et al. (2004) Selective inhibition of calcineurin–NFAT signaling by blocking protein-protein interaction with small organic molecules. Proc. Natl Acad. Sci. USA 101, 7554–7559
  48. Shirane, M. and Nakayama, K. I. (2003) Inherent calcineurin inhibitor FKBP38 targets Bcl-2 to mitochondria and inhibits apoptosis Nat. Cell Biol. 5, 28−37 https://doi.org/10.1038/ncb894
  49. Sun, L., Youn, H. D., Loh, C., Stolow, M., He, W., et al. (1998) Cabin 1, a negative regulator for calcineurin signaling in T lymphocytes. Immunity 8, 703–711 https://doi.org/10.1016/S1074-7613(00)80453-7
  50. Terui, Y., Saad, N., Jia, S., McKeon, F., and Yuan, J. (2004) Dual role of sumoylation in the nuclear localization and transcriptional activation of NFAT1. J. Biol. Chem. 279, 28257-28265 https://doi.org/10.1074/jbc.X300006200
  51. Trevillyan, J. M., Chiou, X. G., Chen, Y. W., Ballaro, S. J., Sheets, M. P., et al. (2001) Potent inhibition of NFAT activation and T cell cytokine production by novel low molecular weight pyrazole compounds. J. Biol. Chem. 276, 48118−48126
  52. Vega, R. B., Yang, J., Rothermel, B. A., Bassel-Duby, R., and Williams, R. S. (2002) Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J. Biol. Chem. 277, 30401−30407
  53. Venkatesh, N., Feng, Y., DeDecker, B., Yacono, P., Golan, D., et al. (2004) Chemical genetics to identify NFAT inhibitors: potential of targeting calcium mobilization in immunosuppression. Proc. Natl Acad. Sci. USA 101, 8969–8974
  54. Zhu, J., Shibasaki, F., Price, R., Guillemot, J. C., Yano, T., et al. (1998) Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93, 851–861 https://doi.org/10.1016/S0092-8674(00)81137-X