Munc18 Plays an Important Role in the Regulation of Glutamate Release during Female Puberty Onset

  • Kim, Byung U. (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Choi, Jungil (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Ahn, Kook Hee (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Jeong, Jin Kwon (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Ha, Chang Man (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Jeong, Choon Soo (Department of Biological Sciences, College of Natural Sciences, University of Ulsan) ;
  • Lee, Chae Kwan (Institute of Industrial Medicine, Inje University) ;
  • Kang, Sung Goo (School of Biotechnology and Biomedical Science, Inje University) ;
  • Lee, Byung Ju (Department of Biological Sciences, College of Natural Sciences, University of Ulsan)
  • Received : 2006.02.08
  • Accepted : 2006.06.25
  • Published : 2006.08.31

Abstract

Munc18, a mammalian homolog of C. elegans Unc, is essential for neurotransmitter release. The aim of this study was to identify estrogen-dependent expression of Munc18-1 and its role in the regulation of glutamate release for puberty onset. Hypothalamic munc18-1 mRNA levels were significantly increased by estrogen treatment in ovariectomized, immature female rats. During pubertal development, the munc18-1 mRNA levels dramatically increased between the juvenile period and the anestrous phase of puberty. Intracerebroventricular administration of an antisense oligodeoxynucleotide against munc18-1 mRNA significantly decreased glutamate release and delayed the day of puberty onset. These results suggest that Munc18-1, expressed in an estrogen-dependent manner, plays an important role in the onset of female puberty via the regulation of glutamate release.

Keywords

Acknowledgement

Supported by : University of Ulsan

References

  1. Bidlingmeyer, B. A., Cohen, S. A., and Tarvin, T. L. (1984) Rapid analysis of amino acids using pre-column derivatization. J. Chromatogr. 336, 93−104 https://doi.org/10.1016/S0378-4347(00)85133-6
  2. Bourguignon, J. P. and Franchimont, P. (1984) Puberty-related increase in episodic LHRH release from rat hypothalamus in vitro. Endocrinology 114, 1941−1943 https://doi.org/10.1210/endo-114-5-1941
  3. Brann, D. W. and Mahesh, V. B. (1997) Excitatory amino acids:evidence for a role in the control of reproduction and anterior pituitary hormone secretion. Endocr. Rev. 18, 678−700 https://doi.org/10.1210/er.18.5.678
  4. Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics 77, 71−94
  5. Choi, E. J., Ha, C. M., Choi, J., Kang, S. S., Lee, B. J., et al. (2001) Low-density cDNA array-coupled to PCR differential display identifies new estrogen-responsive genes during the postnatal differentiation of the rat hypothalamus. Mol. Brain Res. 97, 115−128 https://doi.org/10.1016/S0169-328X(01)00302-3
  6. Danielson, P. E., Forss-Petter, S., Brow, M. A., Calavetta, L., Douglass, J., et al. (1988) p1B15: a cDNA clone of the rat mRNA encoding cyclophilin. DNA 7, 261−267 https://doi.org/10.1089/dna.1988.7.261
  7. Dulubova, I., Sugita, S., Hill, S., Hosaka, M., Rizo J., et al. (1999) A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18, 4372−4382 https://doi.org/10.1093/emboj/18.16.4372
  8. Fremeau, R. T. Jr., Troyer, M. D., Pahner, I., Nygaard, G. O., Edwards, R. H., et al. (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31, 247−260 https://doi.org/10.1016/S0896-6273(01)00344-0
  9. Garcia, E. P., Gatti, E., Butler, M., Burton, J., and De Camilli, P. (1994) A rat brain Sec1 homologue related to Rop and UNC18 interacts with syntaxin. Proc. Natl. Acad. Sci. USA 91, 2003−2007
  10. Ha, C. M., Kang, J. H., Choi, E. J., Kim, M. S., Lee, B. J., et al. (2000) Progesterone increases mRNA levels of pituitary adenylate cyclase-activating polypeptide (PACAP) and type I PACAP receptor (PAC(1)) in the rat hypothalamus. Mol. Brain Res. 78, 59−68 https://doi.org/10.1016/S0169-328X(00)00070-X
  11. Hata, Y., Slaughter, C. A., and Sudhof, T. C. (1993) Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366, 347−351 https://doi.org/10.1038/366347a0
  12. Hisano, S., Hoshi, K., Ikeda, Y., Maruyama, D., Nogami, H., et al. (2000) Regional expression of a gene encoding a neuronspecific Na(+)-dependent inorganic phosphate cotransporter (DNPI) in the rat forebrain. Mol. Brain Res. 83, 34−43 https://doi.org/10.1016/S0169-328X(00)00194-7
  13. Kim, K., Lee, B. J., Park, Y., and Cho, W. K. (1989) Progesterone increases messenger ribonucleic acid (mRNA) encoding luteinizing hormone releasing hormone (LHRH) level in the hypothalamus of ovariectomized estradiol-primed prepubertal rats. Mol. Brain Res. 6, 151−158 https://doi.org/10.1016/0169-328X(89)90049-1
  14. Kim, M. S., Ha, C. M., and Lee, B. J. (2001) Simultaneous determination of multiple transcripts and splice variants of a primary transcript using ribonuclease protection assays. Brain Res. Protoc. 7, 277−285 https://doi.org/10.1016/S1385-299X(01)00078-2
  15. Kim, M. S., Hur, M. K., Son, Y. J., Park, J. I., Lee, B. J., et al. (2002) Regulation of pituitary adenylate cyclase-activating polypeptide gene transcription by TTF-1, a homeodomaincontaining transcription factor. J. Biol. Chem. 277, 36863−36871 https://doi.org/10.1074/jbc.M206443200
  16. Ma, Y. J., Dissen, G. A., Rage, F., and Ojeda, S. R. (1996) RNase protection assay. Methods 10, 273−278 https://doi.org/10.1006/meth.1996.0102
  17. Mello, C. V., Jarvis, E. D., Denisenko, N., and Rivas, M. (1997) Isolation of song-regulated genes in the brain of songbirds. Methods Mol. Biol. 85, 205−217
  18. Misura, K. M., Scheller, R. H., and Weis, W. I. (2000) Threedimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404, 355−362 https://doi.org/10.1038/35006120
  19. Ojeda, S. R. and Terasawa, E. (2002) Neuroendocrine regulation of puberty; in Hormones, Brain and Behavior, Pfaff, D., Arnold, A., Etgen, A., Fahrbach, S., Moss, R., et al. (eds.), pp. 589−659, Elsevier, New York
  20. Ojeda, S. R. and Urbanski, H. F. (1994) Puberty in the rat; in The Physiology of Reproduction, Knobil, E. and Neill, J. D. (eds.), pp. 363−409. Raven Press, New York
  21. Park, S. H., Choi, J., Kang, J. I., Choi, S. Y., Ahn, B. Y., et al. (2005) Attenuated expression of interferon-induced protein knase PKR in simian cell devoid of type I interferons. Mol. Cells 21, 21−28
  22. Paxinos, G. and Watson, C. (1998) The Rat Brain, In Stereotaxic Coordinates, 4th ed., Academic Press, San Diego
  23. Pevsner, J., Hsu, S. C., and Scheller, R. H. (1994) n-Sec1: a neural-specific syntaxin-binding protein. Proc. Natl. Acad. Sci. USA 91, 1445−1449
  24. Plant, T. M., Gay, V. L., Marshall, G. R., and Arslan, M. (1989) Puberty in monkeys is triggered by chemical stimulation of the hypothalamus. Proc. Natl. Acad. Sci. USA 86, 2506−2510
  25. Urbanski, H. F. and Ojeda, S. R. (1987) Activation of luteinizing hormone-releasing hormone release advances the onset of female puberty. Neuroendocrinology 46, 273−276 https://doi.org/10.1159/000124831
  26. Urbanski, H. F. and Ojeda, S. R. (1990) A role for N-methyl-Daspartate (NMDA) receptors in the control of LH secretion and initiation of female puberty. Endocrinology 126, 1774−1776 https://doi.org/10.1210/endo-126-3-1774
  27. Verhage, M., Maia, A. S., Plomp, J. J., Brussaard, A. B., Sudhof, T. C., et al. (2000) Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 287, 864−869 https://doi.org/10.1126/science.287.5454.864
  28. Yang, B., Steegmaier, M., Gonzalez, L. C. Jr., and Scheller, R. H. (2000) nSec1 binds a closed conformation of syntaxin1A. J. Cell Biol. 148, 247−252