The Relation between Gender and Multiple Intelligence and Technological Problem Solving Ability of Middle School Students

중학생들의 성별에 따른 다중지능과 기술적 문제해결력과의 관계

  • Received : 2006.10.30
  • Accepted : 2006.12.20
  • Published : 2006.09.30

Abstract

This study investigated what effects multiple intelligence, through which the diverse intelligence abilities of a learner are identified, has on technological problem solving ability according to sex. And it was carried out to present a way to reduce the gap between boys and girls in technological problem solving ability. The subject was 833 middle school students in the third grade (boys: 423, girls: 410) whose schools are located in a megalopolis or more large area. And the instruments developed by Yong-Lyn Moon(2001) and in CRESST(1998) were used. The results of this study are as follows. First, it appeared that there were statistically meaningful differences at six items in multiple intelligence between boys and girls. The six items were bodily-kinesthetic intelligence, logical-mathematical intelligence, naturalistic intelligence, musical intelligence, interpersonal intelligence, and introspective intelligence. Second, in technological problem solving ability, it appeared that boys and girls showed statistically meaningful differences at self-regulation and problem solving strategy. Third, it appeared that logical-mathematical intelligence, linguistic intelligence, introspective intelligence, and natural intelligence had an effect on boys in the way of self-regulation and logic-mathematical intelligence, introspective intelligence, naturalistic intelligence, and linguistic intelligence did on girls. Fourth, it appeared that logical-mathematical intelligence, musical intelligence, and bodily-kinesthetic intelligence had an effect on boys in the way of problem solving ability and linguistic intelligence and musical intelligence had on girls. Fifth, it appeared that logical-mathematical intelligence did an effect on both sexes in drawing up the understanding of contents. On the basis of the results of this study, the area related to multiple intelligence directly or indirectly should be developed in the course of designing the primary and secondary curriculums to reduce the gap between boys and girls in multiple intelligence. With these efforts, the scholastic attainments gap caused by the difference of multiple intelligence will be overcome.

이 연구에서는 학습자 개인의 다양한 지적 능력을 파악할 수 있는 다중지능이 성별에 따라 기술적 문제해결력에 어떠한 영향을 미치고 있는가를 조사하여, 성별에 따른 기술적 문제해결력의 차이를 줄이기 위한 방안을 제시하고자 한다. 연구의 대상은 광역시 이상에 소재한 중학교 3학년 833(남학생 423, 여학생 410)명이었고, 문용린(2001)과 1998년 CRESST에서 개발한 도구를 사용하였다. 연구의 결과 첫째, 신체운동지능, 논리수학지능, 자연친화지능, 음악지능, 대인관계지능, 자기성찰지능은 남학생과 여학생간에 통계적으로 유의한 차이가 있는 것으로 밝혀졌다. 둘째, 기술적 문제해결력의 자기조절성향과 문제해결전략에서 남학생과 여학생간에 통계적으로 유의한 차이가 있는 것으로 밝혀졌다. 셋째, 자기조절성향에 영향을 미치는 다중지능으로 남학생은 논리수학지능, 언어지능, 자기성찰지능, 자연친화지능, 여학생은 논리수학지능, 자기성찰지능, 자연친화지능, 언어지능으로 밝혀졌다. 넷째, 문제해결력에 영향을 미치는 다중지능으로 남학생은 논리수학지능, 음악지능, 신체운동지능, 여학생은 언어지능과 음악지능으로 밝혀졌다. 다섯째, 지식 개념도 작성에 영향을 미치는 다중지능으로는 남학생과 여학생 모두 논리수학지능으로 밝혀졌다. 연구의 결과 나타난 성별에 따른 차이를 줄이기 위해, 초 중등학교 교육과정 개발에 다중지능과 직 간접적으로 관련된 분야를 집중적으로 개발할 수 있도록 고려한다면 다중지능의 차이에 의해서 발생되는 학업성취도 차이를 어느 정도 극복할 수 있을 것으로 판단된다.

Keywords

References

  1. 교육개혁혁신위원회(2005). 직업교육체제 혁신방안
  2. 교육통계연보(2005). http://210.122.126.23/jcgi-bin/publ_yrbk_frme.htm
  3. 김현진(1998). 다중지능 측정도구의 타당화 연구. 박사학위논문. 서울대학교
  4. 김명희, 김양분(1996). 중등학생의 다중지능 분석. 교육논총, 12, 151-183. 한양대학교
  5. 류숙희(1996). 지각된 다중지능의 집단 차와 IQ 및 성적과의 관계 분석 연구. 박사학위논문. 서울대학교
  6. 한국직업능력개발원 역(1999). 지식기반사회의 교육: 독일 교육연구부의 델파이 조사 보고서. 서울: 한국직업능력개발원
  7. 문용린(2001). MI 적성진로진단검사 실시요강. 서울: 대교 한국교육평가센터
  8. 문용린(2004). 지력혁명. 서울: 비즈니스 북스
  9. 안광식(2006). 교육통계방법. 서울: 인터비젼
  10. 안광식, 최완식(2005). e-Learning에서 학습양식 측정도구 개발, 직업교육연구, 24(1), 133-157
  11. 안광식, 배동윤, 최완식(2004). 학습양식과 e-Learning 학습전략의 관계 연구. 대한공업교육학회지, 29(1), 64-81
  12. 이길호(2002). 중학생의 다중지능과 창의성 및 학업성취도의 관계. 석사학위논문. 한국교원대학교
  13. Britz, J. & Richard, N. (1992). Problem solving in the early childhood classroom. Washington, D. C.: National Education Association
  14. Britz, J. (1993). Problem solving in early childhood Classroom.(ERIC Document Reproduction Service No. ED0-PS-93-1)
  15. Custer, R, L. (1995). Examining the Dimensions Technology. International Journal of Technology and Design Education. 5(3), 219-244 https://doi.org/10.1007/BF00769905
  16. Deluca, V. W. (1991). Implementing Technology Education Problem-Solving Activities. Journal of Technology Education, 2(2), 5-15
  17. Deluca, V. W. (1992). Implementing Technology Education Problem-Solving Activities. Journal of Technology and Design Education. 5(3), 219-244
  18. Eggleston, Jone. (1992). Teaching Design and Technology. P. A.: Open University Press
  19. Gardner, H. (1983). Frames of mind: Theory of multiple intelligences. New York: Basic Books
  20. Gardner, H. (1993). Multiple intelligences: The theory in practice. NY: Basic Books
  21. Gardner, H. (1999). Intelligence reframed: Multiple intelligence for the 21st century. New York: Basic Books
  22. MacPherson, R. T. (1997). The relationship among content knowledge, technical experience, cognitive styles, critical thinking skills, problem solving styles, and near transfer trouble shooting technological problem solving skills of maintenance technicians. Unpublished doctoral dissertation, University of Missouri-Columbia, Columbia
  23. Mayer. (1999). Problem Solving in Encyclopedia of CREATIVITY(vol. 2, 437-447). San Diego: Academic Press
  24. Secretary's Commission on Achieving Necessary Skills. (1992). Learning aliving: A blueprint for high performance, A SCANS report for America 2000. Washington, D.C.: U.S. Government Printing
  25. Walker, D. (2000). Process Over Product. The Technology Teacher. 10-14
  26. Yi, S. (1996). Problem solving in technology education at the secondary level as perceived by technology educators in the United Kingdom and the United States. Unpublished doctoral dissertation, The Ohio State University, Columbus, OH