Effects of NG-monomethyl-L-arginine and L-arginine on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion after cerebral hypoxia-ischemia in newborn piglets

급성 저산소성 허혈성 뇌손상이 유발된 신생자돈에서 재산소-재관류기 동안 NG-monomethyl-L-arginine과 L-arginine이 뇌의 혈역학 및 에너지 대사에 미치는 영향

  • Ko, Sun Young (Department of Pediatrics, Samsung Cheil Hospital, Sungkyunkwan University School of Medicine) ;
  • Kang, Saem (Samsung Biomedical Institute) ;
  • Chang, Yun Sil (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Park, Eun Ae (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Park, Won Soon (Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • 고선영 (성균관대학교 의과대학 삼성제일병원 소아과) ;
  • 강샘 (삼성생명과학연구소) ;
  • 장윤실 (성균관대학교 의과대학 삼성서울병원 소아과) ;
  • 박은애 (이화여자대학교 의과대학 소아과학교실) ;
  • 박원순 (성균관대학교 의과대학 삼성서울병원 소아과)
  • Received : 2005.09.20
  • Accepted : 2005.10.26
  • Published : 2006.03.15

Abstract

Purpose : This study was carried out to elucidate the effects of nitric oxide synthase(NOS) inhibitor, NG-monomethyl-L-arginine(L-NMMA) and nitric oxide precursor, L-arginine(L-Arg) on cerebral hemodynamics and energy metabolism during reoxygenation-reperfusion(RR) after hypoxia-ischemia(HI) in newborn piglets. Methods : Twenty-eight newborn piglets were divided into 4 groups; Sham normal control(NC), experimental control(EC), L-NMMA(HI & RR with L-NMMA), and L-Arg(HI & RR with L-Arg) groups. HI was induced by occlusion of bilateral common carotid arteries and simultaneously breathing with 8 percent oxygen for 30 mins, and followed RR by release of carotid occlusion and normoxic ventilation for one hour. All groups were monitored with cerebral hemodynamics and cytochrome $aa_3$ (Cyt $aa_3$) using near infrared spectroscopy(NIRS). $Na^+$, $K^+$-ATPase activity, lipid peroxidation products, and tissue high energy phosphate levels were determined biochemically in the cerebral cortex. Results : In experimental groups, mean arterial blood pressure, $PaO_2$, and pH decreased, and base excess and blood lactate level increased after HI compared to NC group(P<0.05). These variables subsequently returned to baseline after RR except pH. There were no differences among the experimental groups. In NIRS, oxidized hemoglobin($HbO_2$) decreased and hemoglobin(Hb) increased during HI(P<0.05) but returned to base line immediately after RR; 40 min after RR, the $HbO_2$ had decreased significantly compared to NC group(P<0.05). Changes of Cyt $aa_3$ decreased significantly compared to NC after HI and recovered at the end of the experiment. Significantly reduced cerebral cortical cell membrane $Na^+$, $K^+$-ATPase activity and increased lipid peroxidation products(P<0.05) were not improved with L-NMMA or L-Arg. Conclusion : These findings suggest that NO is not involved in the mechanism of HI and RR brain damage during the early acute phase of RR.

목 적 : 주산기 저산소성 허혈성 뇌손상의 병태 생리에서 nitric oxide(NO)가 급성 저산소성 허혈(hypoxia-ischemia, HI) 후 재산소-재관류기(reoxygenation-reperfusion, RR)에 대뇌의 혈역학 및 에너지 대사에 미치는 영향을 규명하기 위하여, NO 합성 억제제인 NG-monomethyl-L-arginine(L-NMMA)와 NO 합성 촉진제인 L-arginine(L-Arg) 투여를 통하여 뇌신경 세포에 어떠한 영향을 주는지 알아보고자 하였다. 방 법 : 생후 3일 이내의 신생자돈 28마리를 대상으로 무작위로 나누어, Sham 처치만 받은 정상 대조군(n=9), HI와 RR만 유발한 실험 대조군(n=7), HI 이후 RR 직전에 L-NMMA 투여군(n=6)과 L-arginine 투여군(n=6) 등 4군으로 구분하였다. 실험은 ether을 흡입 시킨 후 thiopental을 정주하고, 기관 삽관 후 인공호흡기 등의 처지를 끝낸 후, HI를 유발하기 위하여 실험군에서 수술 겸자로 양측 경동맥을 폐쇄한 후 8% 산소로 30분간 흡입하였고, RR을 시행하기 위하여 경동맥 폐색을 풀고 흡입 산소농도를 60%로 올려 1시간까지 투여하면서 관찰하였다. 생리적 변수로 혈압과 동맥혈 가스 소견을 관찰하였고, 뇌의 혈역학적 변화와 에너지 상태는 near infrared spectroscopy(NIRS)를 이용하여 대뇌의 산화 헤모글로빈($HbO_2$), 환원헤모글로빈(Hb), 환산 헤모글로빈(HbD), 싸이토크롬 $aa_3$(Cyt $aa_3$) 등을 지속적으로 관찰하여 비교하였다. 또한 실험 종료 시 얻은 뇌조직에서 $Na^+$, $K^+$-ATPase의 활성도 및 지질 대사산물인 conjugated dienes, 고에너지 인분자인 ATP(adeninetriphosphate)와 phosphocreatine(PCr)을 비교하였다. 결 과 : 생리적 변수의 변화에서는 실험군 모두에서 정상 대조군에 비하여 혈압, 동맥혈 산소 분압, pH, base excess 등이 유의하게 감소하였고(P<0.05), 젖산은 유의하게 증가하였다(P<0.05). L-NMMA와 L-Arg군에서 실험 대조군과 유의한 차이는 없었다. 실험군에서 RR 1시간 후 pH를 제외한 혈압, 동맥혈 산소 분압, base excess 등의 이상소견은 모두 기저치로 회복되었고, 실험군간에 유의한 차이가 없었다. NIRS 소견에서 $HbO_2$와 HbD는 HI 동안 정상 대조군에 비하여 실험군 모두에서 유의하게 감소하였으나(P<0.05), RR 직후 기저치로 회복되었으며, $HbO_2$는 RR 40분 이후 정상 대조군에 비해 유의하게 감소하였다(P<0.05). Hb은 정상 대조군을 제외한 모든 실험군에서 HI 동안 유의하게 증가하였다가(P<0.05), RR 직후 기저치로 회복되었다. 산화 Cyt $aa_3$는 HI 동안 실험군 모두에서 감소하는 경향을 보였고, RR 이후 다시 증가하였다. 정상 대조군과 각 실험군간에 유의한 차이는 없었다. 뇌의 $Na^+$, $K^+$-ATPase 활성도와 conjugated dienes은 실험군 모두에서 정상 대조군(제1군)에 비하여 유의하게 감소하였다(P<0.05). 뇌의 ATP, phosphocreatine은 실험군 모두에서 정상 대조군과 차이가 없었고, 또한 실험군간에도 유의한 차이가 없었다. 결 론 : 신생 자돈에서 급성 저산소성 허혈 이후 재산소-재관류기 동안 NO 합성 억제제인 L-NMMA나 NO 생성 촉진제인 L-arginine이 뇌 혈역학이나 뇌의 에너지 대사에는 특별한 변화를 일으키지 않았다. 따라서 급성 저산소성 허혈성 뇌손상에서 재산소화 재관류기 초기에는 NO가 뇌손상의 주요한 기전으로 작용하지 않을 것으로 사료된다. 또한 뇌혈역학 및 생화학적 검사 결과 등에서 급성기에는 에너지 부전 상태가 주요한 세포손상 기전이 아니고, 이온 농도의 변화에 의한 뇌부종, 산소유리기에 의한 뇌세포 손상이 저산소성 허혈성 뇌손상의 급성기에 주로 작용하는 뇌세포 손상의 주요 기전임을 시사한다. 따라서 NO 생성 억제제 혹은 생성 전구물질인 L-Arg은 뇌신경 세포 보호 효과를 보이지 않아 급성 주산기 가사의 치료제로서 제한이 됨을 알 수 있었다. 그러나 좀 더 명확한 효과를 보기 위하여 선택적 억제제의 사용, 제제의 용량 및 투여시기, 손상 후 좀더 긴 시간 이후의 변화에 대한 연구가 필요하다.

Keywords

References

  1. Freeman JM, Nelson KB. Intrapartum asphyxia and cerebral palsy. Pediatrics 1988;82:240-9
  2. Vannucci RC. Hypoxic-ischemic encephalopathy. Am J Perinatol 2000;17:113-20 https://doi.org/10.1055/s-2000-9293
  3. Volpe JJ. Hypoxic-ischemic encephalopathy : Clinical aspects, In : Volpe JJ, eds. Neurology of the newborn, 4th Edition. Philadelphia, PA : W.B. Saunders 2001, p331-96
  4. Hallenbeck JM, Dutka AJ. Background review and current concepts of reperfusion injury. Arch Neurol 1990;47:1245-54 https://doi.org/10.1001/archneur.1990.00530110107027
  5. Lorek A, Takei Y, Cady EB, Wyatt JS, Penrice J, Edwards AD, et al. Delayed('secondary') cerebral energy failure after acute hypoxia-ischemia in the newborn piglet : continuous 48-hour studies by phosphorus magnetic resonance spectroscopy. Pediatr Res 1994;36:699-706 https://doi.org/10.1203/00006450-199412000-00003
  6. Iadecola C, Xu X, Zhang F, el-Fakahany EE, Ross ME. Marked induction of calcium-independent nitric oxide synthase activity after focal cerebral ischemia. J Cereb Blood Flow Metab 1995;15:52-9 https://doi.org/10.1038/jcbfm.1995.6
  7. Sato S, Tominaga T, Ohnishi T, Ohnishi ST. Electron paramagnetic resonance study on nitric oxide production during focal ischemia and reperfusion in the rat. Brain Res 1994;647:91-6 https://doi.org/10.1016/0006-8993(94)91402-8
  8. Yoshida T, Waeber C, Huang Z, Moskowitz MA. Induction of nitric oxide synthase activity in rodent brain following middle cerebral artery occlusion. Neurosci Lett 1995;194:214-8 https://doi.org/10.1016/0304-3940(95)11752-I
  9. Buisson A, Plotkine M, Boulu RG. The neuroprotective effect of a nitric oxide inhibitor in a rat model of focal cerebral ischaemia. Br J Pharmacol 1992;106:766-7 https://doi.org/10.1111/j.1476-5381.1992.tb14410.x
  10. Nagafuji T, Sugiyama M, Muto A, Makino T, Miyauchi T, Nabata H. The neuroprotective effect of a potential and selective inhibitor oftype I NOS(L-MIN) in a rat model of focal cerebral ischaemia. Neuroreport 1995;6:1541-5 https://doi.org/10.1097/00001756-199507310-00019
  11. Dawson DA, Kusumoto K, Graham DI, McCulloch J, Macrae IM. Inhibition of nitric oxide synthesis does not reduce infarct volume in a rat model of focal cerebral is-chaemia. Neurosci Lett 1992;142:151-4 https://doi.org/10.1016/0304-3940(92)90361-A
  12. Buchan AM, Gertler SZ, Huang ZG, Li H, Chaundy KE, Xue D. Failure to prevent selective CA1 neuronal death and reduce cortical infarction following cerebral ischemia with inhibition of nitric oxide synthase. Neuroscience 1994; 61:1-11 https://doi.org/10.1016/0306-4522(94)90054-X
  13. Sadoshima S, Nagao T, Okada Y, Fujii K, Ibayashi S, Fujishima M. L-arginine ameliorates recirculation and metabolic derangement in brain ischmeia in hypertensive rats. Brain Res 1997;744:246-52 https://doi.org/10.1016/S0006-8993(96)01063-3
  14. Jobsis FF. Noninvasive infrared monitoring of cerebral and myocardial suffiency and circulatory parameters. Science 1977;198:1264-7 https://doi.org/10.1126/science.929199
  15. Wray S, Cope M, Delpy DT, Wyatt JS, Reynolds EO. Characterization of the near infrared absorption spectra of cytochrome aa3 and hemoglobin for the noninvasive monitoring of cerebral oxygenation. Biochem Biophys Acta 1988; 933:184-92. https://doi.org/10.1016/0005-2728(88)90069-2
  16. Chang YS, Park WS, Lee MH, Kim KS, Shin SM, Choi JH. Delayed cerebral energy failure after acute hypoxiaischemia in newborn piglet under 48 hours of continuous monitoring using near-infrared spectroscopy. J Korean Pediatr Soc 1998;41:1198-208
  17. Harik SI, Doull GH, Dick AP. Specific ouabain binding to brain microvessels and choroid plexus. J Cereb Blood Flow Metab 1985;5:156-60 https://doi.org/10.1038/jcbfm.1985.20
  18. Lamprecht W, Stein P, Heinz F, Creatine phosphate. In Bergmeyer HU, editor. Methods of enzymatic analysis. New York : Academic Press Inc, 1974:1777-81
  19. Berger R, Jensen A, Krieglstein J, Steigelman JP. Effects of acute asphyxia on brain energy metabolism in fetal guinea pigs near term. J Dev Physiol 1991;16:9-11
  20. Martin LJ, Brambrink MA, Lehmann C, Portera-Cailliau C, Koehler R, Rothstein J, et al. Hypoxia-ischemia causes abnormalities in glutamate transporters and death of astroglia and neurons in newborn striatum. Ann Neurol 1997;42:335- 48 https://doi.org/10.1002/ana.410420310
  21. Riikonen RS, Kero PO, Simell OG. Excitatory amino acids in cerebral fluid in neonatal asphyxia. Pediatr Neurol 1992;8:37-40 https://doi.org/10.1016/0887-8994(92)90050-9
  22. Choi DW. Calcium-mediated neurotoxicity : Relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988;11:465-9 https://doi.org/10.1016/0166-2236(88)90200-7
  23. Delivoria-Papadopoulos M, Mishra OP. Mechanism of cerebral injury in perinatal asphyxia and strategies for prevention. J Pediatr 1998;132:S30-S34 https://doi.org/10.1016/S0022-3476(98)70525-6
  24. Pang Z, Geddes JW. Mechanism of cell death induced by the mitochondrial toxin 3-nitropropionic acid : acute excitotoxic necrosis and delayed apoptosis. J Neurosci 1997;17:3064-73 https://doi.org/10.1523/JNEUROSCI.17-09-03064.1997
  25. Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci 1991;14:60-7 https://doi.org/10.1016/0166-2236(91)90022-M
  26. Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, as calmodulin-requiring enzyme. Proc Natl Acad Sci USA 1990;87:682-5
  27. Murphy S, Simmons ML, Agullo L, Garcia A, Feinstein DL, Galea E, et al. Synthesis of nitric oxide in CNS glial cells. Trends Neurosci 1993;16:323-8 https://doi.org/10.1016/0166-2236(93)90109-Y
  28. Nazaki K, Moskowitz MA, Maynard KI, Koketsu N, Dawson TM, Bredt DS, et al. Possible origins and distributions of immunoreactive nitric oxide synthase-containing nerve fibers in cerebral arteries. J Cereb Blood Flow Metab 1993; 13:70-9 https://doi.org/10.1038/jcbfm.1993.9
  29. Kano T, Shimizu-Sasamato M, Huang PL, Moskowitz MA, Lo EH. Effects of nitric oxide synthase gene knockout on neurotransmitter release in vivo. Neuroscience 1998;86:695-9. https://doi.org/10.1016/S0306-4522(98)00179-1
  30. Cholet N, Seylaz J, Lacombe P, Bonvento G. Local uncoupling of the cerebrovascular and metabolic responses to somatosensory stimulation after neuronal nitric oxide synthase inhibition. J Cereb Blood Flow Metab 1997;17:1191-201 https://doi.org/10.1097/00004647-199711000-00008
  31. Iadecola C, Zhang F. Permissive and obligatory roles of NO in cerebrovascular responses to hypercapnia and acetylcholine. Am J Physiol 1996;271:R990-R1001
  32. Kubes P, Suzuki M, Granger DN. Nitric oxide : an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 1991;88:4651-5 https://doi.org/10.1073/pnas.88.11.4651
  33. Ma J, Meng W, Ayata C, Huang PL, Fishman MC, Moskowitz MA. L-NNA-sensitive regional cerebral blood flow augmentation during hypercapnia in type III NOS mutant mice. Am J Physiol 1996;271:H1717-9
  34. Dalkara T, Yoshida K, Irikura K, Moskowitz MA. Dual role of nitric oxide in focal cerebral ischemia. Neurophamacology 1994;33:1447-52 https://doi.org/10.1016/0028-3908(94)90048-5
  35. Park WS. Clinical applications of near infrared spectroscopy. J Korean Pediatr Soc 1996;39:595-602
  36. Wyatt JS, Cope M, Deply DT, Richardson CE, Edwards AD, Wray S, et al. Quantitation of cerebral blood volume in human infants by near-infrared spectroscopy. J Appl Physiol 1990;68:1086-91 https://doi.org/10.1152/jappl.1990.68.3.1086
  37. Kariman K, Hempel FG, Jobsis FF. In vivo comparison of cytochrome aa3 redox state and tissue pO2 in transient anoxia. J Appl Physiol 1983;55:1057-63
  38. Chang YS, Park WS, Lee M, Kim KS, Shin SM, Choi JH. Near infrared spectroscopic monitoring of secondary cerebral energy failure after transient globral hypoxia-ischemia in newborn piglet. Neurol Res 1999;21:216-24 https://doi.org/10.1080/01616412.1999.11740921
  39. Erecinska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab 1989;9:2-19 https://doi.org/10.1038/jcbfm.1989.2
  40. Cao W, Carney JM, Duchon A, Floyd RA, Chevion M. Oxygen free radical involvement in ischemia and reperfusion injury in brain. Neurosci Lett 1988;88:233-8 https://doi.org/10.1016/0304-3940(88)90132-2