Functions and Power Laws of Critical Micelle Concentration with Respect to Temperature

임계 마이셀 농도의 온도 함수와 지수 법칙

  • Received : 2006.06.09
  • Accepted : 2006.07.31
  • Published : 2006.10.10

Abstract

Micelles have been used in many applications. In these applications it is of prime importance to know how the critical micelle concentration (CMC), above which the micelles are formed, depends on temperature. Up to date polynomial functions of temperature have been used to describe temperature dependence of CMC. In this article it is shown that such polynomials are inadequate tools to express thermal behavior of CMC. Hence, new equations of CMC(T) have been derived on the basis of rigorous thermodynamic equations and experimental observations on CMCs. The new equations fit CMC data excellently, and further they lead to a power law for the CMC. The exponent of the power-law expression is 2 irrespective of surfactant systems, which points to the generality of newly found equations.

마이셀은 여러 방면에서 폭넓게 활용되고 있다. 그러므로 마이셀이 처음으로 형성되는 농도인 임계 마이셀 농도(임마농, CMC)가 온도에 따라 어떻게 달라지는지 이해하는 것이 중요하다. 이제까지 셀 수 없이 많은 논문에서 임마농의 온도 의존성을 온도의 다항식으로 나타내어 사용하였다. 본 논문에서는 이의 부당함을 밝혔으며, 열역학적 사실과 실험 관찰 결과에 근거하여 임마농의 온도 함수를 새롭게 구하였다. 그리고 여기에서 더 나아가 새로운 식을 이용하여 임마농의 온도에 대한 지수 법칙을 구하였다. 이 식들을 임마농 자료에 맞춤으로써 이들의 정확도를 조사하였는데, 매우 정확한 것으로 판명되었으며, 특히 지수 법칙에서 지수가 계면활성제에 관계없이 2로 나타나서 모든 계면활성제에 사용될 수 있는 식으로 평가되었다.

Keywords

Acknowledgement

Supported by : 한국과학기술기획평가원

References

  1. B. Lindman and H. Wennerstrom, Topics in Current Chemistry, vol. 87, Springer-Verlag, Berlin (1980)
  2. B. Jonsson, B. Lindman, K. Holmberg, and B. Kronberg, Surfactants and Polymers in Aqueous Solution, John Wiley and Sons, New York (1997), p. 84
  3. J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed., Academic Press, San Diego (1992), p. 381
  4. J. H. Fendler, Membrane Mimetic Chemistry, Characterizations and Applications of Micelles, Microemulsion, Monolayers, Bilayers, Vesicles, Host-Guest Systems and Polyions, John Wiley, New York (1982)
  5. J. H. Fendler, Membrane Mimetic Approach to Advanced Materials, Springer-Verlag, Berlin (1992)
  6. M. A. Fox, Res. Chem. Intermed., 15, 153 (1991) https://doi.org/10.1163/156856791X00048
  7. M. P. Pileni, Langmuir, 13, 3266 (1997) https://doi.org/10.1021/la960319q
  8. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Nature, 359, 710 (1992) https://doi.org/10.1038/359710a0
  9. http://akunger1.chemie.uni-maiz.de/Allan/Welcome.html
  10. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Hresge, K. D. Smith, T.-W. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schenker, J. Am. Chem. Soc., 114, 10834 (1992) https://doi.org/10.1021/ja00053a020
  11. T. Sun and J. Y. Ying, Nature, 389, 704 (1997) https://doi.org/10.1038/39549
  12. Y. Lu, R. Ganguli. C. A. Drewien, M. T. Anderson, C. J. Brinker, W. Gong, Y. Guo, H. Soyez, B. Dunn, M. H. Huang, and J. I. Zink, Nature, 389, 364 (1997) https://doi.org/10.1038/38699
  13. S. A. Bragshaw, E. Prouzet, and T. J. Pinnavaia, Science, 269, 1242 (1995) https://doi.org/10.1126/science.269.5228.1242
  14. H. Morawetz, Adv. Catal., 20, 341 (1969) https://doi.org/10.1016/S0360-0564(08)60276-X
  15. Y. Moroi, Micelles: Theoretical and Applied Aspects, Chapter 11, Plenum, New York (1992)
  16. D. D. Miller, L. J. Magid, and D. F. Evans, J. Phys. Chem., 94, 5921 (1990) https://doi.org/10.1021/j100378a058
  17. P. Becher, in M. J. Schick (Ed.), Nonionic Surfactants, Marcel Dekker, New York (1967)
  18. B. D. Flockhart, J. Colloid Sci., 16, 484 (1961) https://doi.org/10.1016/0095-8522(61)90026-5
  19. E. H. Crook, D. B. Fordyce, and G. F. Trebbi, J. Phys. Chem., 67, 1987 (1963) https://doi.org/10.1021/j100804a010
  20. La Mesa, C., Colloid Polym. Sci., 268, 959 (1990) https://doi.org/10.1007/BF01469375
  21. La Mesa, C., Colloid Surf., 3, 329 (1989) https://doi.org/10.1016/0166-6622(81)80060-1
  22. La Mesa, C., Z. A. Ranieri, and M. Terenzi, J. Surface Sci. Tech., 6, 151 (1990)
  23. C. La Mesa, J. Phys. Chem., 94 323 (1990) https://doi.org/10.1021/j100364a054
  24. N. B. Stasiuk and L. L. Schramm, J. Colloid Interface Sci., 324 , 178 (1996)
  25. K.-H. Kang, H.-U. Kim, Lim, K.-H., Colloid Surface A, 189, 113 (2001) https://doi.org/10.1016/S0927-7757(01)00577-5
  26. H.-U. Kim and K.-H. Lim, Colloid Surface A, 235, 121 (2004) https://doi.org/10.1016/j.colsurfa.2003.12.019
  27. H.-U. Kim and K.-H. Lim, Bull. Korean Chem. Soc., 24, 1449 (2003) https://doi.org/10.5012/bkcs.2003.24.10.1449
  28. H.-U. Kim and K.-H. Lim, Kor. J. Oil Chem. Soc., 18, 325 (2001)
  29. G. C. Kresheck and W. A. Hargraves, J. Colloid Interface Sci., 48, 481 (1974) https://doi.org/10.1016/0021-9797(74)90193-3
  30. V. Tomasic, A. Chittofrati, and N. Kallay, Colloid Surf. A, 104, 95 (1995) https://doi.org/10.1016/0927-7757(95)03260-K
  31. A. Kiraly and I. Dekany, J. Colloid Interface Sci., 242, 214 (2002) https://doi.org/10.1006/jcis.2001.7777
  32. S. Paula, W. Sus, J. Tuchtenhagen, and A. Blume, J. Phys. Chem., 99, 11742 (1995) https://doi.org/10.1021/j100030a019
  33. N. Muller, Langmuir 9, 96 (1993) https://doi.org/10.1021/la00025a022
  34. P. Gilli, V. Ferretti, G. Gilli, and P. A. Borea, J. Phys. Chem. 98, 1515 (1993)
  35. B. Madan and B. Lee, Biophys. Chem., 51, 279 (1994) https://doi.org/10.1016/0301-4622(94)00049-2
  36. R. Lumry and S. Rajender, Biopolym., 9, 1125 (1970) https://doi.org/10.1002/bip.1970.360091002
  37. C. Jolicoeur and R. P. Philip, Can. J. Chem., 52, 1834 (1974) https://doi.org/10.1139/v74-262
  38. V. C. Krishnan and L. H. Friedman, J. Solution Chem., 2, 37 (1974) https://doi.org/10.1007/BF00645870
  39. G. Sugihara and M. Hisatomi, J. Colloid Interface Sci., 219, 31 (1999) https://doi.org/10.1006/jcis.1999.6378
  40. K.-H. Lim, manuscript in preparation
  41. K.-H. Lim, Colloids, Interfaces, and Polymers (Lecture Note) (2005)
  42. S. J. Gill, N. F. Nichols, and I. Wadso, J. Chem. Thermodynamics, 8, 445 (1976) https://doi.org/10.1016/0021-9614(76)90065-3
  43. J. A. Stead and H. J. Taylor, J. Colloid Interface Sci., 30, 482 (1969) https://doi.org/10.1016/0021-9797(69)90417-2
  44. L.-J. Chen, S.-Y. Lin, C.-C. Huang, and E.-M. Chen, Colloid Surf. A, 135, 175 (1998) https://doi.org/10.1016/S0927-7757(97)00238-0
  45. V. Mosquera, J. M. del Rip, D. Attwood, M. Garcia, M. N. Jones, G. Prieto, M. J. Suarez, and F. Sarmiento, J. Colloid Interface Sci., 206, 66 (1998) https://doi.org/10.1006/jcis.1998.5708
  46. M. Fugiwara, T. Okano, T-H. Nakashima, A. A. Nakamura, and H. Sugihara, Colloid Polym. Sci., 275, 474 (1977) https://doi.org/10.1007/s003960050106
  47. G. Sugihara and M. Hisatomi, J. Colloid Interface Sci., 219, 31 (1999) https://doi.org/10.1006/jcis.1999.6378
  48. H.-U. Kim, Ph. D. Dissertation, Chung-Ang University (2002)
  49. P. Taboada, D. Attwood, M. Garcia, M. N. Jones, J. M. Ruso, V. Mosquera, and F. Sarmiento, J. Colloid Interface Sci., 221, 242 (2000) https://doi.org/10.1006/jcis.1999.6586
  50. D. Attwood, E. Boitard, J.-P. Dubes, and H. Tachoire, J. Colloid Interface Sci., 227, 356 (2000) https://doi.org/10.1006/jcis.2000.6908
  51. D. Mukergee and K. J. Mysels, Critical Micelle Concentrations of Aqueous Surfactant Systems, NSRDS-NBS 36 (1971)