Functional Characterization of NtCDPK1 in Tobacco

  • Lee, Sang Sook (Laboratory of Plant Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Gyeong Mee (Laboratory of Plant Genomics, Korea Research Institute of Bioscience and Biotechnology) ;
  • Rho, Eun Jung (Department of Biological Sciences, Ajou University) ;
  • Moon, Eunpyo (Department of Biological Sciences, Ajou University) ;
  • Pai, Hyun-Sook (Division of Bioscience and Bioinformatics, Myongji University)
  • Received : 2005.09.22
  • Accepted : 2005.10.10
  • Published : 2006.02.28

Abstract

We previously showed that NtCDPK1, a tobacco calcium-dependent protein kinase, interacts with and phosphorylates the Rpn3 regulatory subunit of the 26S proteasome, and that both NtCDPK1 and Rpn3 are mainly expressed in rapidly proliferating tissues, including shoot and root meristem. In this study, we examined NtCDPK1 expression in roots using GUS expression in transgenic Arabidopsis plants, and investigated its function in root development by generating transgenic tobacco plants carrying a sense NtCDPK1 transgene. GUS activity was first detected in roots two days after sowing. In later stages, strong GUS expression was detected in the root meristem and elongation zone, as well as the initiation sites and branch points of lateral roots. Transgenic tobacco plants in which NtCDPK1 expression was suppressed were smaller, and their root development was abnormal, with reduced lateral root formation and less elongation. These results suggest that NtCDPK1 plays a role in a signaling pathway regulating root development in tobacco.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology

References

  1. Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., et al. (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14, 619-628 https://doi.org/10.1105/tpc.010454
  2. Bailey, E. and Reed, S. I. (1999) Functional characterization of Rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol. Cell. Biol. 19, 6872-6890
  3. Boerjan, W., Cervera, M. T., Delarue, M., Beeckman, T., Dewitte, W., et al. (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7, 1405−1419 https://doi.org/10.1105/tpc.7.9.1405
  4. Casimiro, I., Beeckman, T., Graham, N., Bhalerao, R., Zhang, H., et al. (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci. 8, 165−171 https://doi.org/10.1016/S1360-1385(03)00051-7
  5. De Veylder, L., De Almeida Engeler, J., Burssens, S., Manevski, A., Lescure, B., et al. (1999) A new D-type cyclin of Arabidopsis thaliana expressed during lateral root primordial formation. Planta 208, 453-462 https://doi.org/10.1007/s004250050582
  6. Del Pozo, J. C. and Estelle, M. (1999) Function of the ubiquitinproteasome pathway in auxin response. Trends Plant Sci. 4, 107−112 https://doi.org/10.1016/S1360-1385(99)01382-5
  7. Gray, W. M. and Estelle, M. (2000) Function of the ubiquitinproteasome pathway in auxin response. Trends Biochem. Sci. 25, 133−138 https://doi.org/10.1016/S0968-0004(00)01544-9
  8. Harmon, A. C., Gribskov, M., and Harper, J. F. (2000) CDPKs-a kinase for every $Ca^{2+}$ signal- Trends Plant Sci. 5, 154-159 https://doi.org/10.1016/S1360-1385(00)01577-6
  9. Harper, J. F., Breton, G., and Harmon, A. C. (2004) Decoding $Ca^{2+}$ signals through plant protein kinases. Annu. Rev. Plant Biol. 55, 263−288 https://doi.org/10.1146/annurev.arplant.55.031903.141627
  10. Himanen, I. K., Boucheron, E., Vanneste, S., de Almeida Engler, J., Inze, D., et al. (2002) Auxin-mediated cell cycle activation during early lateral root initiation. Plant Cell 14, 2339-2351 https://doi.org/10.1105/tpc.004960
  11. Himanen, K., Vuylsteke, M., Vanneste, S., Vercruysse, S., Boucheron, E., et al. (2004) Transcript profiling of early lateral root initiation. Proc. Natl. Acad. Sci. USA 101, 5146− 5151
  12. Hobbie, L. and Estelle, M. (1995) The axr4 auxin-resistant mutants of Arabidopsis thaliana define a gene important for root gravitropism and lateral root initiation. Plant J. 7, 211-220 https://doi.org/10.1046/j.1365-313X.1995.7020211.x
  13. Jefferson, R. A., Kavanagh, T. A., and Bevan, M. W. (1987) GUS fusion: ${\beta}$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907
  14. Kaiser, P., Moncollin, V., Clarke, D. J., Watson, M. H., Bertolaet, B. L., et al. (1999) Cyclin-dependent kinase and Cks/Suc1 interact with the proteasome in yeast to control proteolysis of M-phase targets. Genes Dev. 13, 1190-1202 https://doi.org/10.1101/gad.13.9.1190
  15. Kepinski, S. and Leyser, O. (2005) Plant development: auxin in loops. Curr. Biol. 15, R208−210 https://doi.org/10.1016/j.cub.2005.03.012
  16. King, J. J., Stimart, D. P., Fisher, R. H., and Bleecker, A. B. (1995) A mutation altering auxin homeostasis and plant morphology in Arabidopsis. Plant Cell 7, 2023-2037 https://doi.org/10.1105/tpc.7.12.2023
  17. Lee, S. S., Cho, H. S., Yoon, G. M., Ahn, J.-W., Kim, H. H., et al. (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26S proteasome in Nicotiana tabacum. Plant J. 33, 825-840 https://doi.org/10.1046/j.1365-313X.2003.01672.x
  18. Lee, S.-C., Huh, K.-Y., An, K., An, G., and Kim, S.-R. (2004) Ectopic expression of a cold-inducible transcription factor, CBF/DREB1b, in transgenic rice (Oryza sativa L.). Mol. Cells 18, 107-114
  19. Lopez-Bucio, J., Cruz-Ramirez, A., and Herrera-Estrella, L. (2003) The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6, 280-287 https://doi.org/10.1016/S1369-5266(03)00035-9
  20. Ludwig, A. A., Romeis, T., and Jones, J. D. G. (2004) CDPKmediated signaling pathways: specificity and cross-talk. J. Exp. Bot. 55, 181-188 https://doi.org/10.1093/jxb/erh008
  21. Malamy, J. E. and Benfey, P. N. (1997) Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33-44
  22. Malamy, J. E. (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 28, 67−77 https://doi.org/10.1111/j.1365-3040.2005.01306.x
  23. McCubbin, A. G., Ritchie, S. M., Swanson, S. J., and Gilroy, S. (2004) The calcium-dependent protein kinase HvCDPK1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J. 39, 206-218 https://doi.org/10.1111/j.1365-313X.2004.02121.x
  24. Morello, L., Frattini, M., Gianì, S., Christou, P., and Breviario, D. (2000) Overexpression of the calcium-dependent protein kinase OsCDPK2 in transgenic rice is repressed by light in leaves and disrupts seed development. Transgenic Res. 9, 453-462 https://doi.org/10.1023/A:1026555021606
  25. Romeis, T., Ludwig, A. A., Martin, R., and Jones, J. D. G. (2001) Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO J. 20, 5556-5567 https://doi.org/10.1093/emboj/20.20.5556
  26. Ruegger, M., Dewey, E., Gray, W. M., Hobbie, L., Turner, J., et al. (1998) The TIR1 protein of Arabidopsis functions in auxin response and is related to human SKP2 and yeast grr1p. Genes Dev. 12, 198−207 https://doi.org/10.1101/gad.12.2.198
  27. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., and Izui, K. (2000) Overexpression of a single $Ca^{2+}$ -dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319-327 https://doi.org/10.1046/j.1365-313x.2000.00787.x
  28. Sheen, J. (1996) $Ca^{2+}$ -dependent protein kinases and stress signal transduction in plants. Science 274, 1900-1902 https://doi.org/10.1126/science.274.5294.1900
  29. Smith, M. W., Ito, M., Miyawaki, M., Sato, S., Yoshikawa, Y., et al. (1997) Plant 21D7 protein, a nuclear antigen associated with cell division, is a component of the 26S proteasome. Plant Physiol. 113, 281−291 https://doi.org/10.1104/pp.113.1.281
  30. Suh, M. C., Choi, D., and Liu, J. R. (1998) Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol. Cells 8, 678-684
  31. Timpte, C., Lincoln, C., Pickett, F. B., Turner, J., and Estelle, M. (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J. 8, 561-569 https://doi.org/10.1046/j.1365-313X.1995.8040561.x
  32. Yoon, G. M., Cho, H. S., Ha, H. J., Liu, J. R., and Lee H. S. (1999) Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39, 991-1001 https://doi.org/10.1023/A:1006170512542