Difference in Growth, SOD Activity and MDA Content Between Ozone Tolerant and Sensitive Families of Open-Pollinated Pinus densiflora

소나무 풍매차대묘의 오존 내성 및 민감성 가계간 생장, SOD 활성 및 MDA 함량 차이

  • Lee, Jae-Cheon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Oh, Chang-Young (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Han, Sim-Hee (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Kim, Jang-Su (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • 이재천 (국립산림과학원 산림유전자원부) ;
  • 오창영 (국립산림과학원 산림유전자원부) ;
  • 한심희 (국립산림과학원 산림유전자원부) ;
  • 김장수 (국립산림과학원 산림유전자원부)
  • Received : 2006.02.27
  • Accepted : 2006.03.20
  • Published : 2006.09.30

Abstract

This study was conducted to understand response of damage and tolerance to ozone between ozone tolerant and sensitive families of P. densiflora which had been selected by the based on visual injury and growth. Five individuals were selected in each group, and were exposed to 100ppb ozone for 90 days. Every 30 days after ozone fumigation, diamter at root collar (ORC), superoxide dismutase (SOD) activity, and malondialdehyde (MDA) content were measured. In early state of ozone fumigation tolerant families showed three times higher relative DRC growth rate than sensitive families. And during whole fumigation period growth rate of tolerant families was superior to growth rate of sensitive families. SOD activity in sensitive families was increased 30 days after fumigation, and in accordance with fumigation period extended it was decreased continuously. MDA content in ozone treatment showed higher than in control, and MDA content of tolerant families was higher than that sensitive families. In our results tolerant families has higher antioxidative activity than sensitive families. Therefore tolerant families can restrain lipid peroxidation and damage on physiological activity.

국내 주요 경제수종인 소나무의 내성 가계와 민감성 가계간의 오존에 대한 피해반응 및 내성반응을 알아보고자 본 연구를 수행하였다. 내성 가계와 민감성 가계를 각각 5가계씩 선발하여 오존 100 ppb 농도에서 90일간 처리를 하여 근원경 생장, SOD 활성, MDA 함량을 측정하였다. 근원경 생장에서 오존 처리 초기에 내성 가계가 민감성 가계에 비하여 약 3배 높은 생장율을 보였으며, 처리 기간 동안 내성 가계의 생장이 더 우수한 것으로 나타났다. 대조구에 대한 처리구의 SOD 활성비는 민감성 가계의 경우 오존 처리 초기에 증가하고 처리 기간이 길어짐에 따라서 지속적으로 감소한 반면, 내성 가계는 60일까지 증가한 후 감소하였다. 오존 처리구의 MDA 함량은 대조구에 비하여 전체적으로 높게 나타났으며, 민감성 가계가 내성 가계보다 높은 MDA 함량을 나타냈다. 따라서 내성 가계는 민감성 가계에 비하여 항산화 능력이 우수하기 때문에 지질과산화 작용을 억제하는 등 생리적 장애를 극복하는 능력이 높아 생장감소가 적게 나타나는 것으로 판단된다.

Keywords

References

  1. 이재천, 김장수, 한심희, 김판기. 2004. 오존에 노출된 자작나무류의 기공개폐와 광합성 반응. 한국농림기상학회 6: 11-17
  2. 이재천, 오창영, 한심희, 김장수. 2005a. 소나무 풍매차 대묘의 가계간 오존에 대한 민감성 반응. 한국임학회지 94: 191-196
  3. 이재천, 오창영, 한심희, 김판기. 2005b. 오존 노출시간에 따른 버즘나무와 백합나무의 광합성과 SOD 활성 변화. 한국농림기상학회지 7: 156-163
  4. 이재천, 김인식, 여진기, 구영본. 2001. 잎의 가시적 피애에 따른 오존에 대한 미루나무(Populus deltoides) 클론간 감수성 비교. 한국임학회지 90: 10-18
  5. 한심희, 이재천, 장석성, 홍용표. 2002. 탄수화물 배분과 분할 패턴을 기초로 한 자작나무류 4수종의 오존 민감성 비교. 한국임학회지 91: 449-456
  6. Asada, K., M. Takahashi and M. Nagate. 1974. Assay and inhibitors of spinach superoxide dismutase. Agricultural and Biological Chemistry 38: 471-473 https://doi.org/10.1271/bbb1961.38.471
  7. Beadle, C.L. 1993. Growth analysis. pp. 36-46. In : D.O. Hall, J.M.O. Scurlock. H.R. Bolhar-Nordenkampf, R.C. Leegood, and S.P. Long, ed. Photosynthesis and Production in a Changing Environment, A Filed and Laboratory Manual. Chapman & Hall. London
  8. Beauchamp, C. and I. Fridovichi. 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44: 276-287 https://doi.org/10.1016/0003-2697(71)90370-8
  9. Bennet, J.H., E.H. Lee and H.E. Heggestad. 1984. Biochemical aspect of plant. pp. 413-424. In : Koziol, M.J. and F.R. Whatley, ed. Gaseous Air Pollutants and Plant Metabolism. Butterworth. England
  10. Bergmann, E., J. Bender, and H.J. Weigel. 1999. Ozone threshold doses and exposure-response relationships for the development of ozone injury symptoms in wild plant species. New Phytologist 144: 423-435 https://doi.org/10.1046/j.1469-8137.1999.00534.x
  11. Bortier, J., K. Vandermerien, L. De Temmerman and R. Ceulemans. 2001. Growth, photosynthesis and ozone uptake of young beech (Fagus sylvatica L.) in response to different ozone exposures. Trees 15: 75-82 https://doi.org/10.1007/s004680000076
  12. Bungener, P., G.R. Balls, S. Nussbaum, M. Giessman, A. Grub and J. Furher. 1999. Leaf injury characteristics of grassland species exposed to ozone in relation to soil moisture condition and vapour pressure deficit. New Phytologist 142: 271-282 https://doi.org/10.1046/j.1469-8137.1999.00390.x
  13. Esterbauer, H. and K.H. Cheeseman. 1990. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods in Enzymology 186: 407-42l https://doi.org/10.1016/0076-6879(90)86134-H
  14. Ferdinand, J.A., T.S. Fredericksen, K.B. Kouteric and J.M. Skelly. 2000. Leaf morphology and ozone sensitivity of two open pollinated genotypes of black cherry (Prunus serotina) seedlings. Environmental Pollution 108: 297-302 https://doi.org/10.1016/S0269-7491(99)00078-0
  15. Guidi, L., M. Tonini, and G.F. Soldatini. 2000. Effects of high light and ozone fumigation on photosynthesis in Phaseolus vulgaris. Plant Physiology and Biochemistry 38: 717-725 https://doi.org/10.1016/S0981-9428(00)01172-4
  16. Heath, R.L. 1980. Initial events in injury to plants by air pollutants. Annual Review of Plants Physiology 31: 395-431 https://doi.org/10.1146/annurev.pp.31.060180.002143
  17. Heath, R.L. and G.E. Taylor. 1997. Physiological processes and plant responses to ozone exposure. pp. 317-368. In : Sandermann, H., A.L. Wellburn and R.L. Heath, ed. Forest Decline and Ozone, Ecological Studies. Springer-Verlag
  18. Hippeli, S. and E. Elstner. 1996. Mechanisms of oxygen activation during plant stress: biochemical effects of air pollutants. Journal of Plant Physiology 148: 249-257 https://doi.org/10.1016/S0176-1617(96)80250-1
  19. Jiri, S., M. Gilbert, I. Weingart and C. Wilhelm. 2003. Thermoluminescence as a tool for monitoring ozone-stressed plants. Environmental Pollution 123: 15-20 https://doi.org/10.1016/S0269-7491(02)00365-2
  20. Karnosky, D.F., G.K. Podila, Z. Gagnon, P. Pechter, A. Akkapeddi, Y. Sheng, D.E. Riemenschneider, M.D. Coleman, R.E. Dickson and J.G. Isebrands. 1998. Genetic control of responses to interacting tropospheric ozone and $CO_{2}$ in Populus tremuloides. Chemosphere 36: 807-812 https://doi.org/10.1016/S0045-6535(97)10128-X
  21. Knox, J.P. and A.D. Dodge. 1985. Singlet oxygen and plants. Phytochemistry 24: 889-896 https://doi.org/10.1016/S0031-9422(00)83147-7
  22. Li, Y., Y. Zu, J. Chen, H. Chen, J. Yang and Z. Hu. 2000. Intraspecific differences in physiological response of 20 wheat cultivars to enhanced ultraviolet-B radiation under field conditions. Environmental and Experimental Botany 44: 95-103 https://doi.org/10.1016/S0098-8472(00)00057-5
  23. Paakkonen, E., J. Vahala, T. Holopainen, R. Karjalainen and L. Karenlampi. 1996. Growth responses and related biochemical and ultrastructural changes of the photosynthetic apparatus in birch (Betula pendula) saplings exposed to low concentrations of ozone. Tree Physiology 16: 597-605 https://doi.org/10.1093/treephys/16.7.597
  24. Pye, J.M. 1988. Impact of ozone on the growth and yield of trees: a review. Journal of Environmental Quality 17: 347-360 https://doi.org/10.2134/jeq1988.00472425001700030003x
  25. Shannon, J.G. and C.L. Mulchi. 1974. Ozone damage to wheat varieties at anthesis. Crop Science 14: 335-337 https://doi.org/10.2135/cropsci1974.0011183X001400020052x
  26. Sheng, Y., G.K. Podila and D.F. Karnosky. 1997. Differences in $O_{3}$-induced superoxide dismutase and glutathione antioxidant expression in 03 tolerant and sensitive trembling aspen (Populus tremuloides Michx.) clones. Forest Genetics 4: 25-33
  27. Steiner, K.C. and D.D. Davis. 1979. Variation among Fraxinus families in foliar response to ozone. Canadian Journal of Forest Research 9: 106-109 https://doi.org/10.1139/x79-017