Effects of Jasmonic Acid on Root Growth and Eleutheroside Accumulation in Adventitious Root Culture of Eleutherococcus koreanum

섬오갈피나무 부정근(不定根) 배양(培養)에서 부정근(不定根)의 생장(生長)과 Eleutheroside 류(類)의 생산(生産)에 미치는 Jasmonic acid 처리(處理)의 영향

  • Received : 2005.09.20
  • Accepted : 2006.01.05
  • Published : 2006.03.31

Abstract

The influence of different doses of jasmonic acid on both biomass of adventitious roots and accumulation of secondary metabolite in bioreactor cultures of Eleutherococcus koreanum was studied. The maximum growth (2.9 g Dry Weight/L) of adventitious roots was observed in the absence of jasmonic acid. The biomass of adventitious roots decreased with the increase in jasmonic acid dosage. High level of jasmonic acid efficiently stimulated the production of both eleutheroside B and E. The highest eleutheroside B ($49.0{\mu}g/g\;DW$) was observed at 0.4 mg/L jasmonic acid. Jasmonic acid at 0.2 mg/L led to the maximum accumulation of eleutheroside E ($64.7{\mu}g/g\;DW$). Whereas eleutheroside $E_1$ was maximally $19.0{\mu}g/g\;DW$ accumulated in the absence of jasmonic acid, the total eleutheroside ($259.9{\mu}g/L$) was the highest when 0.01 mg/L jasmonic acid was treated. In this study, the level of eleutheroside B decreased whereas the maximum levels of eleutheroside E and eleutheroside $E_1$ were observed at 10th and 4th day after jasmonic acid treatment.

생물반응기를 이용한 섬오갈피 부정근 배양시에 jasmonic acid를 농도별 (0, 0.01, 0.05, 0.1, 0.2, 0.4 mg/L)로 처리하여 부정근의 생장과 eleutheroside류 생산과의 관계를 조사하였다. Jasmonic acid 처리농도별 부정근의 생장은 무처리구에서 2.9 g Dry Weight/L로 가장 높았으며 jasmonic acid 농도가 증가할수록 부정근 생장은 감소하였다. 그러나 eleutheroside B와 E의 함량은 jasmonic acid 농도가 높을수록 증가하여 eleutheroside B는 0.4 mg/L처리구에서 $49.0{\mu}g/g\;DW$, eleutheroside E는 0.2 mg/L처리구에서 $64.7{\mu}g/g\;DW$로 가장 생산량이 많았다. 반면에 eleutheroside $E_1$은 무처리구에 $19.0{\mu}g/g\;DW$로 가장 생산량이 많았다. 배지 lL당 eleutheroside류의 총생산량은 0.01 mg/L처리구에서 $259.9{\mu}g/L$를 생산하여 가장 우수하였다. 0.01 mg/L의 jasmonic acid 처리 후 12일간 eleutheroside류의 함량을 조사한 결과 eleutheroside B는 jasmonic acid처리 후 감소하였으나, eleutheroside E는 처리 후 10일째, eleutheroside $E_1$은 처리 후 4일째 가장 많은 생산량을 보여 주었다.

Keywords

References

  1. 李時珍. 本草綱目. 1974. 高文社. pp. 1204
  2. 東醫寶鑑. 1959. 東方書店. pp. 740
  3. 안진권.이위영.오성진.박유헌.허성두.최명석. 2000. 가시오갈피나무의 eleutheroside E 및chlorogenic acid 성분함량. 한국임학회지 89(2): 216-222
  4. 안진권.박소영.이위영.이정주. 2005. 생물반응기 배양에서 생장조절제에 따른 섬오갈피 부정근 증식 및 eleutheroside와 chlorogenic acid 생산. 식물생명공학회지 32(1): 57-61
  5. Akalezi, C.O., Liu. S., Li. Q.S., Yu, J.T., and Zhong, J.J. 1999. Combined effects of initial sucrose concentration and inoculum size on cell growth and ginseng saponin production by suspension cultures of Panax ginseng. Process Biochemistry 34: 639-642 https://doi.org/10.1016/S0032-9592(98)00132-0
  6. Bourgaud, F., Gravot. A., Milesi, S., and Gontier, E. 2001. Production of plant secondary metabolites: a historical perspective. Plant Science 161: 839-851 https://doi.org/10.1016/S0168-9452(01)00490-3
  7. Chen, H. and Chen, H. 1999. Effects of methyl jasmonate and salicylic acid on cell growth and crytotashinone formation in Ti transfomed Salivia miltiorrhiza cell suspension cultures. Biotechnology Letter 21: 803-807 https://doi.org/10.1023/A:1005551911450
  8. Choi, Y.E., Kim, J.W, and Soh, W.Y. 1997. Somatic embryogenesis and plant regeneration from suspension cultures of Acanthopanax koreanum Nakai. Plant Cell Reports 17: 84-88 https://doi.org/10.1007/s002990050357
  9. Choi, Y.H. and Kim, J.W. 2002. Quantitative analysis of eleutheroside Band E using HPLC-ESI/MS. Korean Journal of Pharmacognosy 33: 88-91
  10. Creelman, R.A. and Mullet, J.E. 1997. Biosynthesis and action of jasmonates in plants. Annual Review. Plant Physiology and Plant Molecular Biology 48: 355-381 https://doi.org/10.1146/annurev.arplant.48.1.355
  11. Gundlach, H., Muller. M., Kutchan, T., and Zenk, M. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proceeding of National Academy of Science U.S.A. 89: 2389-2393
  12. Kang, H.S., Kim. Y.H., Lee. C.S., Choi, I., and Pyun, K.H. 1996. Suppression of interleukin-1 and tumor necrosis factor-${\alpha}$ production by acanthoic acid, (-) pimara-9(11), 15-dien-19-oic acid, and its antifibrotic effects in vivo. Cellular Immunology 170: 212-221 https://doi.org/10.1006/cimm.1996.0154
  13. Kang, S.M., Jung. H.Y., Kang., Y.M., Yun. D.J., Bahk. J.D., Yang, J.K., and Choi, M.S. 2004. Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science 166: 745-751 https://doi.org/10.1016/j.plantsci.2003.11.022
  14. Lazaridou, A., Roukas. T., Biliaderis, C.G., and Vaikousi, H. 2002. Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme and Microbial Technology 31: 122-132 https://doi.org/10.1016/S0141-0229(02)00082-0
  15. Lee, Y.S., Lee, E.B., and Kim, Y.H. 2001. Some pharmacological activities of acanthoic acid isolated from Acanthopanax koreanum root bark. The Journal of Applied Pharmacology 9: 176-182
  16. Liu, S. and Zhong, J.J. 1997. Simultaneous production of ginseng saponin and polysaccharide by suspension cultures of Panax ginseng Nitrogen effects. Enzyme and Microbial Techology 21: 518-524 https://doi.org/10.1016/S0141-0229(97)00023-9
  17. Liu, S. and Zhong, J.J. 1998. Phosphate effect on production of ginseng saponin and polysaccharide by cell suspension cultures of Panax ginseng and Panax quinquefolium. Process Biochemistry 33: 69-74 https://doi.org/10.1016/S0032-9592(97)00064-2
  18. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  19. Paek, K.Y. and Chakravarthy, D. 2003. Micropropagation of woody plants using bioreactor, in: Jain, S. M and K. Ishii (Eds). Micropropagation of woody trees and fruits. Kluwer Academic Publishers, Dordresht, pp. 735-755
  20. Perry, L.M. 1980. Medicinal Plants of Far East and Southeast Asia. The MlT Press, Cambridge. pp. 41
  21. Seon, J.H., Yu, K.W., Cui, Y.Y., Kim, M.H., Lee, S.J., Son, S.H., and Paek, K.Y. 1999. Application of bioreactor for the production of saponin by adventitious roots cultures in Panax ginseng, in:Altman A (Ed), Plant Biotechnology and In Vitro Biology in the 21st Century, Kluwer Academic Publishers, Netherlands, pp. 329-332
  22. Shin, K.H. and Lee, S.H. 2002. The chemistry of products from Acanthopanax species and their pharmacological activities. Natural Product Sciences 8(4): 111-126
  23. Slacanin, I., Marston, A., and Hostettmann, K. 1991. The isolation of Eleutherococcus senticosus constituents by centrifugal partition chromatography and their quantitative determination by high performance liquid chromatography. Phytochemistry Analysis 2: 137-142 https://doi.org/10.1002/pca.2800020310
  24. Son, S.H., Choi. S.M., Lee. Y.H., Choi. K.B., Yun. S.R., Kim. J.K., Park, H.J., Kwon, O.W., Noh, E.W. Seon, J.H., and Paek, K.Y. 2000. Large-scale growth and taxane production in cell cultures of Taxus cuspidata (Japanese yew) using a novel bioreactor. Plant Cell Reports 19: 628-633 https://doi.org/10.1007/s002990050784
  25. Suresh, B., Thimmaraju, R., Bhagyalakshmi, N., and Ravishankar, G.A. 2004. Polyamine and methyl jasmonateinfluenced enhancement of betalaine production in hairy root cultures of Beta vulgaris grown in a bubble column reactor and studies on efflux of pigments. Process Biochemistry 39: 2091-2096 https://doi.org/10.1016/j.procbio.2003.10.009
  26. Tang, W. 1992. Chinese drugs of plant origin, SpringerVerlag, Heidelberg, pp. 1-12
  27. Yook, C.S., Kim, J.H., Hahn, D.R., Nohara, T., and Chang, S.Y. 1998. A lupane-triterpene glycoside from leaves of two Acanthopanax. Phytochemistry 49: 839-843 https://doi.org/10.1016/S0031-9422(97)00846-7
  28. Yook, C.S., Risley, E.A., and Seo, Y.K. 1976. A new form of Acanthopanax species(l). Korean Journal of Pharmacognosy 7: 179-190
  29. Yu, K.W., Gao, w., Hahn, E.J., and Paek, K.Y. 2002. Jasmonic acid improves ginsenoside accumulation in adventitious root culture of Panax ginseng C.A. Meyer. Biochemical Engineering Journal 11: 211-215 https://doi.org/10.1016/S1369-703X(02)00029-3
  30. Zhong, J.J., Chen, F., and Hu, W.W. 1999. High density cultivation of Panax notoginseng cells in stirred bioreactors for the production of ginseng biomass and ginseng saponin. Process Biochemistry 35: 491-496 https://doi.org/10.1016/S0032-9592(99)00095-3
  31. Zobayed, S.M.A and Saxena, P.K. 2003. In vitro grown roots a superior explant for prolific shoot regeneration of St. John's wort (Hypericum perforatum L. cv 'New Stem') in a temporary immersion bioreactor. Plant Science 165: 463-470 https://doi.org/10.1016/S0168-9452(03)00064-5