Analysis of cytosine adenine(CA) repeat polymorphism of the IGF-I gene and influence on serum IGF-I levels in healthy children and adolescents

한국인 소아 및 청소년에서 IGF-I 유전자형의 분석과 cytosine-adenine(CA) repeat 유전자 다형성이 혈중 IGF-I 농도에 미치는 영향

  • Ko, Myung Jin (Department of Pediatrics, College of Medicine, Inje University) ;
  • Hwang, Tae Gyu (Department of Pediatrics, College of Medicine, Inje University) ;
  • Lee, Jeong Nye (Department of Laboratory Medicine, College of Medicine, Inje University) ;
  • Chung, Woo Yeong (Department of Pediatrics, College of Medicine, Inje University)
  • 고명진 (인제대학교 의과대학 소아과학교실) ;
  • 황태규 (인제대학교 의과대학 소아과학교실) ;
  • 이정녀 (인제대학교 의과대학 진단검사의학과학교실) ;
  • 정우영 (인제대학교 의과대학 소아과학교실)
  • Received : 2006.08.23
  • Accepted : 2006.09.13
  • Published : 2006.12.15

Abstract

Purpose : The aim of the present study was to investigate the role of polymorphic cytosine adenine (CA) repeat of the IGF-I gene in the age-related alterations of serum IGF-I levels in healthy children. Methods : Two hundred and forty three normal healthy children (136 boys; 107 girls) aged between 7 and 15 years were enrolled in the present study. The primers were designed to cover the promoter regions containing the polymorphic CA repeat. Data were analyzed using GeneMapper software, version 3.7. All analyses were performed using MEDCALC software packages. Results: Deletion of 2 bp (G, A) following 3' of CA repeat were observed in all Korean children. The CA repeat sequences ranged from 17 to 23, and 19 CA repeat were the most common with an alleles frequency of 39.3 percent. Considering genotypes, 63.8 percent of subjects were homozygote or heterozygote for 19 CA repeat (192 bp allele), suggesting that this is wild type allele from which all other alleles originated in Korean children. Homozygote for 19 CA repeat were 14.7 percent, heterozygote for 19 CA repeat was 49.1 percent and 19 CA noncarriers totalled 36.2 percent. In 19 CA repeat noncarriers, the mean height, weight and serum IGF-I level were lower compared with those of 19 CA homozygous carriers, but statistically not significant. Correlations between serum IGF-I level and age according to the IGF-I genotypes revealed statistically significant relationships in the all groups, in the 19 CA repeat carrier group and, even in the noncarrier group. Conclusions : There were no significant differences of the mean height, weight and serum IGF-I levels among three different genotype groups. Also, there were no significantly different correlations between 19 CA repeat polymorphisms and serum IGF-I levels, according to genotype. Our results suggest that the IGF-I 19 CA repeat gene polymorphism is not associated with circulating IGF-I levels in healthy children.

목 적 : IGF-I 프로모터 CA repeat 유전자 다형성이 혈청 IGF-I농도에 미치는 영향에 대해서는 일치되지 않은 결과들이 보고되어 있다. 저자들은 한국인 소아 및 청소년을 대상으로 IGF-I 유전자형의 분석을 실시하였고, CA repeat 유전자 다형성이 혈청 IGF-I 농도에 미치는 영향을 조사하였다. 방 법 : 신장 계측에 의해 1998년에 제작된 한국소아 표준 신장표에 의거하여 나이에 따른 평균 신장 2표준편차 안에 속하는 소아 및 청소년 243명을 대상으로 하였다. 유전자형의 분석은 유전자 염기서열분석을 실시하였다. CA repeat 회수에 따른 대립유전자의 분포를 조사하였고, 이를 바탕으로 유전자형을 분류하였다. 결 과 : 한국인 소아 및 청소년에서는 IGF-I 프로모터 CA repeat 3' end 부위에 2 bp 크기의 결손이 있었다. CA repeat의 분포는 17부터 23까지였으며, 19 repeat가 39.3%의 빈도로 가장 높았다. 유전자형을 살펴보면 한국인 소아의 63.8%가 19 CA repeat를 하나 이상 가지고 있어서, 이 유전자형이 야생형으로 생각된다. 유전자형은 36명(14.8%)은 19 CA repeat(192 bp allele) homozygous, 119명(49.0%)은 heterozygous, 88명은 (36.2%) 19 CA repeat noncarrier 였다. 유전자형에 따른 키, 체중, BMI는 세군 모두에서 유의한 차이가 없었다. 유전자형에 따른 혈청 IGF-I 농도도 19 CA noncarrier군에서 $526.70{\pm}177.67ng/mL$로, 19 CA homozygous군 $570.06{\pm}207.91ng/mL$에 비해 낮았으나 세군 사이에 유의한 차이가 없었다. 유전자형과 나이에 따른 혈청 IGF-I 농도와의 상관관계를 분석하였을때 19 CA homozygote 군(r=0.7181; P<0.0001), heterozygote 군(r=0.5506; P<0.0001) 그리고 19 CA noncarrier군 모두에서 유의한 양의 상관관계를 보였다(r=0.5155; P<0.0001). 결 론 : 한국인 소아 및 청소년에서 19 CA repeat 3' end 부위에 2 bp 크기의 G, A 뉴클레오타이드의 결손이 관찰되었다. IGF-I 유전자의 CA repeat 분포는 17부터 23까지였으며, 19 repeat의 빈도가 39.3%로 가장 높았다. 키, 체중, BMI 그리고 혈청 IGF-I 농도는 유전자형에 따라 유의한 차이가 없었다. 그리고 IGF-I 유전자형과 나이에 따른 혈청 IGF-I 농도 사이에는 유전자형에 관계없이 모든 군에서 유의한 양의 상관관계를 나타내었다. 그러므로 건강한 소아 및 청소년에서는 IGF-I 유전자 다형성이 혈청 IGF-I 농도에 영향을 미치지 않는다.

Keywords

References

  1. Stewart CE, Rotwein P. Growth, differentiation, and survival: multiple physiological functions for insulin-like growth factors. Physiol Rev 1996;76:1005-26 https://doi.org/10.1152/physrev.1996.76.4.1005
  2. Juul A, Dalgaard P, Blum WF, Bang P, Hall K, Michaelsen KF, et al. Serum levels of insulin-like factor(IGF)-binding protein-3(IGFBP-3) in healthy infants, children, and adolscents: the relation to IGF-I, IGF-II, IGFBP-1, IGFBP-2, age, sex, body mass index, and pubertal maturation. J Clin Endocrinol Metab 1995;80:2534-42 https://doi.org/10.1210/jc.80.8.2534
  3. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biologicaql actions. Endocr Rev 1995: 16:3-34
  4. Langford KS, Miell JP. The insulin-like growth factor-I/binding protein axis: physiology, pathophysiology and therapeutic manipulation. Eur J Clin Invest 1993;23:503-16 https://doi.org/10.1111/j.1365-2362.1993.tb00958.x
  5. Brissenden JE, Ullrich A, Francke U. Human chromosomal mapping of genes for insulin-like growth factors I and II and epidermal growth factor. Nature 1984;310:781-4 https://doi.org/10.1038/310781a0
  6. Adamo ML. Regulation of insulin-like growth factor I gene expression. Implications for normal and pathological growth. Diabetes Rev 1995;3:2-27
  7. Rotwein P. Sturucture, evolution, expression and regulation of insulin-like growth factors I and II. Growth factors 1991;5:3-18 https://doi.org/10.3109/08977199109000267
  8. Foyt HL, LeRoith D, Roberts Jr CT. Differential association of insulin-like growth factor I mRNA variants with polysomes in vivo. J Biol Chem 1991;266:7300-5
  9. Yang H, Adamo ML, Koval AP, McGuiness MC, Ben-Hur H, Yang Y, et al. Alternative leader sequences in insulin- like growth factor I mRNAs modulate translational efficiency and encode multiple signal peptides. Endocrinology 1995;9:1380-95 https://doi.org/10.1210/me.9.10.1380
  10. Mittanck DW, Kim SW, Rotwein P. Essential promoter elments are located within the 5' untranslated region of human insulin-like growth factor-I exon I. Mol Cell Endocrinol 1997;126:153-63 https://doi.org/10.1016/S0303-7207(96)03979-2
  11. Vaessen N, Heutink P, Janssen JA, Witteman JC, Testers L, Hofman A, et al. A polymorphism in the gene for IGF-I:functional properties and risk for type 2 diabetes and myocardial infarction. Diabetes 2001;50;637-42 https://doi.org/10.2337/diabetes.50.3.637
  12. Miyao M, Hosoi T, Inoue S, Hoshino S, Shiraki M, Orimo H, et al. Polymorphism of insulin-like growth factor I gene and bone mineral density. Calcif Tissue Int 1998;63:306-11 https://doi.org/10.1007/s002239900532
  13. Rosen CJ, Kurland ES, Vereault D, Adler RA, Rackoff PJ, Craig WY, et al. Association between serum insulin-like growth factor-I(IGF-I) and a simple sequence repeat in IGF-I gene: Implications for genetic studies of bone mineral density. J Clin Endocrinol Metab 1998;83:2286-90 https://doi.org/10.1210/jc.83.7.2286
  14. Jernstrom H, Chu W, Vesprini D, Tao Y, Majeed N, Deal C, et al. Genetic factors related to racial variation in plasma levels of insulin-like growth factor-1: Implications for premenopausal breast cancer risk. Mol Genet Metabol 2001;72:144-54 https://doi.org/10.1006/mgme.2000.3130
  15. Vaessen N, Janssen JA, Heutink P, Hofman A, Lamberts SW, Oostra BA, et al. Association between genetic variation in the gene for insulin-like growth factor-I and low birth weight. Lancet 2002;359:1036-7 https://doi.org/10.1016/S0140-6736(02)08067-4
  16. Arends N, Hohnston L, Hokken-Koelega A, van Duijn C, de Ridder M, Savage M, et al. Polymorphism in the IGF-I gene: Clinical relevance for short children born small for gestational age(SGA). J Clin Endocrinol Metab 2002;87: 2720-4 https://doi.org/10.1210/jc.87.6.2720
  17. Frayling TM, Hattersley AT, McCarthy A, Holly J, Mitchell SM, Gloyn AL, et al. A putative fuctional polymorphism in the IGF-I gene: association studies with type 2 diabetes, adult height, glucose tolerance, and fetal growth in U.K. populations. Diabetes 2002;51:2313-16 https://doi.org/10.2337/diabetes.51.7.2313
  18. Day INM. Insulin-like growth factor-I genotype and birth weight. Lancet 2002;360:945
  19. Harrela M, Koinstinen H, Kaprio J, Lehtovirta M, Tuomilehto J, Eriksson J, et al. Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1 and IGFBP-3. J Clin Invest 1996;98:2612-15 https://doi.org/10.1172/JCI119081
  20. Kao PC, Matheny APJ, Lang CA. Insulin-like growth factor-I comparisons in healthy twin children. J Clin Endocrinol Metab 1994;78:310-2 https://doi.org/10.1210/jc.78.2.310
  21. Jiang DK, Shen H, Li MX, Jiang C, Yang N, Zhu J, et al. No major effect of the insulin-like growth factor I gene on bone mineral density in premenopausal Chinese women. Bone 2005;36:694-9 https://doi.org/10.1016/j.bone.2005.01.013
  22. Takacs I, Koller Dl, Peacock M, Christian JC, Hui SL, Conneally PM, et al. Sibling pair linkage and association studies between bone mineral density and the insulin-like growth factor I gene locus. J Clin Endocrinol Metab 1999; 84:4467-71 https://doi.org/10.1210/jc.84.12.4467
  23. Kim JG, Roh KR, Lee JY. The relationship among serum insulin-like growth factor-I, insulin-like growth factor-I gene polymorphism, and bone mineral density in postmenopausal women in Korea. Am J Obstet Gynecol 2002;186: 345-50 https://doi.org/10.1067/mob.2002.120483
  24. Laron Z. Natural history of the classical form of primary growth hormone(GH) resistance(Laron syndrome). J Pediatr Endocrinol Metab 1999;12(Suppl 1):231-49
  25. Rosenfeld RG, Rosenbloom AL, Guevara-Aguirre J. Growth hormone(GH) insensitivity due to primary GH receptor deficiency. Endocr Rev 1994;15:369-90 https://doi.org/10.1210/edrv-15-3-369
  26. Kofoed EM, Hwa V, Little B, Woods KA, Buckway CK, Tsubaki J, et al. Growth hormone insensitivity associated with a STAT5b mutation. N Engl J Med 2003;349:1139-47 https://doi.org/10.1056/NEJMoa022926
  27. te Velde SJ, van Rossum EF, Voorhoeve PG, Twisk JW, van de Waal AD, Stehouwer CD, et al. An IGF-I promotor polymorphism modifies the relationships between birth weight and risk factors for cardiovascular disease and diabetes at age 36. BMC Endocrine Disordes 2005;5:5-13 https://doi.org/10.1186/1472-6823-5-5
  28. Rietveld I, Janssen JAMJL, van Rossum EFC, Houwing-Duistermaat JJ, Rivadeneira F, Hofman A, et al. A polymorphic CA repeat in the IGF-I gene is associated with gender-specific differences in body height, but has no effect on the secular trend in body height. Clin Endocrinol 2004;61:195-203 https://doi.org/10.1111/j.1365-2265.2004.02078.x
  29. Rietveld I, Janssen JAMJL, Hofman A, Pols HAP, van Duijn CM, Lamberts SWJ. A polymorphism in the IGF-I gene influences the age-related decline in circulating total IGF-I levels. Eur J Endocrinol 2003;148:171-5 https://doi.org/10.1530/eje.0.1480171
  30. Allen NE, Davey GK, Key TJ, Zhang S, Narod SA. Serum insulin-like growth factor I(IGF-I) concentration in men is not associated with cytosine-adenine repeat polymorphism of the IGF-I gene. Cancer Epidemiol Biomarkers Prev 2002;11:319-20
  31. Yu H, Li BDL, Smith M, Shi R, Berkel HJ, Kato I. Polymorphic CA repeats in the IGF-I gene and breast cancer. Breast Cancer Res Treat 2001;70:117-22 https://doi.org/10.1023/A:1012947027213