Physical Properties and Electrical Conductivity of PAN-based Carbon Fiber Reinforced Paper

PAN계 탄소섬유 강화 종이의 물리적 특성 및 전기전도도

  • Jang, Joon (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chang-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Park, Kwan-Ho (Department of Chemical Engineering, Chungnam National University) ;
  • Ryu, Seung-Kon (Department of Chemical Engineering, Chungnam National University)
  • 장준 (충남대학교 화학공학과) ;
  • 이창호 (충남대학교 화학공학과) ;
  • 박관호 (충남대학교 화학공학과) ;
  • 유승곤 (충남대학교 화학공학과)
  • Received : 2006.06.15
  • Accepted : 2006.08.11
  • Published : 2006.12.31

Abstract

Carbon fiber (CF) reinforced papers using polyacrylonitrile (PAN) based CF and wood pulp were prepared by varying the lengths and the concentrations of CF, and the basis weight of paper to investigate adhesive state between CF and pulp, and physical properties and electrical conductivity of the paper. The reinforcement was caused by physical entanglement and adhesion at the interface of the different fibers rather than by chemical bonds. The tear strength and the thickness of the paper increased as increasing the concentration of CF, while the tensile and the burst strength of the paper decreased. The improved dispersion of CF in the paper was obtained from mixing shorter CF, but the maximum electrical conductivity of the paper was gained from mixing 10 mm chopped CF. The electrical conductivity of the paper increased sharply from 2 wt% to 8 wt% of CF showing S-curve, and increased linearly as increasing the basis weight of the paper. Therefore, in order to improve the electrical conductivity and the physical property of the paper, the increase of basis weight of the paper is also important as the increase of CF content in the paper.

폴리아크릴로니트릴(PAN)계 탄소섬유와 목재펄프를 이용하여 탄소섬유의 길이와 함량 및 강화 종이의 평량을 달리하여 각각 탄소섬유 강화 종이를 제조한 후 탄소섬유와 펄프섬유와의 접착특성 및 강화 종이의 물리적 특성과 전기전도도를 조사하였다. 탄소섬유 강화 종이의 형성은 탄소섬유와 펄프섬유의 계면에서의 화학적 결합이라기보다는 물리적인 얽힘과 접착이었으며, 탄소섬유의 첨가량을 증가시키면 강화 종이의 두께와 인열강도는 증가하는 반면 인장강도와 파열강도는 감소하였다. 탄소섬유의 길이가 짧을수록 강화 종이 내에서 섬유의 분산성이 양호하였으나 가장 우수한 전기전도도는 탄소섬유의 길이가 10 mm일 때였다. 강화 종이의 전기전도도는 탄소섬유의 함량이 2 wt%일 때부터 급격히 증가하다가 8 wt% 이상이 되면 서서히 증가하는 S자형 곡선을 보였으며, 강화 종이의 평량 증가에 따라 선형적으로 비례하여 향상되었다. 따라서, 전기전도도와 물리적 특성이 우수한 강화 종이를 얻기 위해서는 탄소섬유의 함량을 증가시킴과 동시에 평량을 증가시키는 것이 바람직하다.

Keywords

Acknowledgement

Supported by : 한국산업기술재단

References

  1. Murday, J. S. and Dominguez, D. D., 'An Assessment of Graphitized Carbon Fiber use for Electrical Power Transmission,' Synth. Met., 9(3), 397-424(1984) https://doi.org/10.1016/0379-6779(84)90007-9
  2. Agari, Y., Ueda, A. and Nagai, S. J., 'Electrical and Thermal Conductivities of Polyethylene Composites Filled with Biaxial Oriented Short-cut Carbon Fibers,' Appl. Polym. Sci., 52(9), 1223- 1231(1994) https://doi.org/10.1002/app.1994.070520907
  3. Das, N. C., Chaki, T. K., Khastgir, D. and Chakraborty, A., 'Electromagnetic Interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-filled Composites Based on Rubber and Rubber Blends,' Adv. Polym. Technol., 20(3), 226-236(2001) https://doi.org/10.1002/adv.1018
  4. Roy, D., Jana, P. B., De, S. K., Gupta, B. R., Chaudhuri, S. and Pal, A. K., 'Study on the Electrical Conductivity and Galvanomagnetic Characteristics of Short Carbon Fibre Filled Thermoplastic Elastomers,' J. Mater. Sci., 31(20), 5313-5319(1996) https://doi.org/10.1007/BF01159298
  5. Wang, X. F., Wang, Y. L. and Jin, Z. H., 'Electrical Conductivity Characterization and Variation of Carbon Fiber Reinforced Cement Composite,' J. Mater. Sci., 37(1), 223-227(2002) https://doi.org/10.1023/A:1013107623281
  6. Park, J. M., Lee, S. I., Kim, J. W. and Yoon, D. J., 'Interfacial and Microfailure Evaluation of Modified Single Fiber-brittle Cement Matrix Composites Using an Electro-micromechanical Technique and Acoustic Emission,' J. Colloid Interface Sci., 244(2), 410-422(2001) https://doi.org/10.1006/jcis.2001.7866
  7. Kio, K. and Hayashi, Y., 'Sheet-like Electric Heater and a Sheetlike Thermal Sensing Element Using Carbon Fiber Mixed Paper', U.S. Patent No. 5,582,757(1996)
  8. Itabashi, M., 'Manufacture of Conductive Heating Paper,' J.P. Patent No. 2000150117(2000)
  9. Jang, J. and Ryu, S. K., 'Electrical Conductivity and Surface Temperature of Carbon Fiber Reinforced Paper,' Korean Chem. Eng. Res., 42(5), 598-604(2004)
  10. Tim, P. and Larry, T., 'The Evolution of Conductive Coatings,' Tappi, 73(12), 86-92(1990)
  11. Paper and board - determination of air permeance (medium range) part3: bendtsen method, ISO 5636-3(1992)
  12. Lee, Y. K., 'Recent Developments in Carbon Fiber as a new Advanced Material,' Polymer(Korea), 9(3), 175-185(1985)
  13. Gardner, K. H. and Blackwell, J., 'The Structure of Native Cellulose,' Biopolymers, 13(10), 1975-2001(1974) https://doi.org/10.1002/bip.1974.360131005
  14. Blackwell, J., Kolpek, F. J. and Gardner, K. H., Tappi, 61(1), 71- 79(1978)
  15. Krekel, G., Huttinger, K. J. and Hoffman, W. P., 'The Relevance of the Surface-structure and Surface-chemistry of Carbon-fibers in Their Adhesion to High-temperature Thermoplastics. 2. Surface- chemistry,' J. Mater. Sci., 29(13), 3461-3468(1994) https://doi.org/10.1007/BF00352050
  16. Bristow, J. A. and Kolseth, P., 'Paper Structure and Properties,' Marcel Dekker. Inc., 311(1986)
  17. Clark, J. d'A., 'Effects of Fiber Coarseness and Length: E. Bulk, Burst, Tear, Fold, and Tensile Tests,' Tappi, 45(8), 628-634(1962)
  18. Miyauchi, S. and Togashi, E., 'The Conduction Mechanism of Polymer-filler Particles,' J. Appl. Polym. Sci., 30(7), 2743-2751 (1985) https://doi.org/10.1002/app.1985.070300703
  19. Cho, J. W. and Choi, J. S., 'Relationship Between Electrical Resistance and Strain of Carbon Fibers Upon Loading,' J. Appl. Polym. Sci., 77(9), 2082-2087(2000) https://doi.org/10.1002/1097-4628(20000829)77:9<2082::AID-APP26>3.0.CO;2-W
  20. Zhang, C., Yi, X. S., Yui, H., Asai, S. and Sumita, M., 'Morphology and Electrical Properties of Short Carbon Fiber-filled Polymer Blends: High-density Polyethylene Poly (methyl methacrylate),' J. Appl. Polym. Sci., 69(9), 1813-1819(1998) https://doi.org/10.1002/(SICI)1097-4628(19980829)69:9<1813::AID-APP16>3.0.CO;2-M
  21. Lozano, K., Rios, B. J. and Baeeera, E. V., 'A Study on Nanofiber- reinforced Thermoplastic Composites (II): Investigation of the Mixing Rheology and Conduction Properties,' J. Appl. Polym. Sci., 80(8), 1162-1172(2001) https://doi.org/10.1002/app.1200
  22. James, d'A. C., Pulp technology and treatment for paper, 430(1985)