A Study on the Decomposition Characteristics of PVC and PS Mixtures with ZnO in Air Atmosphere

공기분위기에서 ZnO를 첨가한 PVC와 PS 혼합물의 분해특성에 관한 연구

  • Oh, Sea Cheon (Department of Environmental Engineering, Kongju National University) ;
  • Jung, Myung Uk (Department of Chemical Engineering, Hanyang University) ;
  • Jun, Hyun-Chul (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Hee Taik (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Hae Pyeong (School of Fire & Disaster Prevention, Kangwon National University)
  • 오세천 (공주대학교 공과대학 환경공학과) ;
  • 정명욱 (한양대학교 공과대학 화학공학과) ;
  • 전현철 (한양대학교 공과대학 화학공학과) ;
  • 김희택 (한양대학교 공과대학 화학공학과) ;
  • 이해평 (강원대학교 소방방재학부)
  • Received : 2006.01.26
  • Accepted : 2006.03.20
  • Published : 2006.04.10

Abstract

The effect of ZnO in the decomposition of poly(vinyl chloride) (PVC) and polystyrene (PS) mixtures in air atmosphere has been studied by thermogravimetry (TG) and gas chromatograph-mass spectrometry (GC-MS) under various mixing ratios and reaction temperatures. From this work, it can be seen that the yields of a liquid product were increased with the increase of PS in mixtures, whereas those of gaseous products were decreased. And the yields of a gaseous product and HCl were decreased with the increase of ZnO in mixtures. It was also found that HCl was rarely produced at ZnO/Mixture = 0.5 by the effect of ZnO in dehydrochlorination of PVC.

공기분위기에서 PVC와 PS의 혼합 분해시 ZnO의 영향에 관한 연구를 혼합비율 및 반응온도를 변화시키며 TG와 GC-MS를 이용하여 수행하였다. 본 연구로부터 혼합물에 있어서 PS의 양이 증가할수록 액상 생성물은 증가하였으며 기상 생성물은 감소함을 알 수 있었다. 또한 혼합물에 있어서 ZnO의 첨가량이 증가할수록 가스 생성물과 염화수소의 발생량은 감소하였으며 ZnO/Mixture = 0.5인 경우 ZnO의 영향에 의하여 염화수소가 거의 생성되지 않음을 확인할 수 있었다.

Keywords

References

  1. J. L. Easterly and M. Burnham, Biomass and Bioenergy, 10, 79 (1996) https://doi.org/10.1016/0961-9534(95)00063-1
  2. J.-K. Woo and S.-W. Kom, Waste Manage. Res., 11, 515 (1993) https://doi.org/10.1177/0734242X9301100606
  3. C.-H., Wu, C.-Y. Chang, J.-L. Hor, S.-M. Shih, L.-W. Chen, and F.-W. Chang, Waste Manage., 13, 221 (1993) https://doi.org/10.1016/0956-053X(93)90046-Y
  4. S. C. Oh, C.-Y. Lee, H. J. Jang, H. C. Jun, H. P. Lee, and H. T. Kim, J. Korean Ind. Eng. Chem., 14, 1149 (2003)
  5. K. M. Kim, Y. S. Kim, S. U. Jeong, and S. H. Kim, J. Korean Ind. Eng. Chem., 13, 583 (2002)
  6. K. R. G. Hein and J. M. Bemtgen, Fuel Processing Technology, 54, 159 (1998) https://doi.org/10.1016/S0378-3820(97)00067-2
  7. H. Spliethoff and K. R. G. Hein, Fuel Processing Technology, 54, 189 (1998) https://doi.org/10.1016/S0378-3820(97)00069-6
  8. G. Taralas and M. G. Kontominas, Fuel, 83, 1235 (2004) https://doi.org/10.1016/j.fuel.2003.11.010
  9. B.-H. Song, J. Ind. Eng. Chem., 11, 361 (2005)
  10. G. Jin, H. Iwaki, N. Arai, and K. Kitagawa, Energy, 30, 1192 (2005) https://doi.org/10.1016/j.energy.2004.08.002
  11. G. Piao, S. Aono, M. Kondoh, R. Yamazaki, and S. Mori, Waste Manage., 20, 443 (1998)
  12. H. J. So, K. H. Kim, N. S. Roh, D. H. Shin, M. S. Yi, S. K. Lee, and T. I. Ohm, J. Korea Soc. Waste Management, 19, 534 (2002)
  13. M. A. Uddin and Y. Sakata, Ind. Eng. Chem. Res., 38, 1406 (1999) https://doi.org/10.1021/ie980445k
  14. H. Ukei, T. Hirose, S. Horikawa, Y. Takai, M. Taka, N. Azuma, and A. Ueno, Catalysis Today, 62, 67 (2000) https://doi.org/10.1016/S0920-5861(00)00409-0
  15. S. C. Oh, M. U. Jung, H. T. Kim, and H. P. Lee, J. Korean Ind. Eng. Chem., 16, 513 (2005)
  16. S. J. Hong, S. C. Oh, H. P. Lee, H. T. Kim, and K. O. Yoo, HWAHAK KONGHAK, 37, 515 (1999)