Spray Drying of Polymer-Adsorbed Drug Nanocrystal Particles

고분자가 흡착된 약물 나노결정입자의 분무 건조

  • Choi, Ji-Yeun (Department of Nano Science and Technology, Sejong University) ;
  • Yoo, Ji Youn (Department of Chemical Engineering and Materials Science, Chung-Ang University) ;
  • Kim, Hwan Yong (Department of Nano Science and Technology, Sejong University) ;
  • Jung, Sang Young (Department of Nano Science and Technology, Sejong University) ;
  • Heo, Yoon Suk (Department of Nano Science and Technology, Sejong University) ;
  • Hong, Sung Chul (Department of Nano Science and Technology, Sejong University) ;
  • Lee, Jonghwi (Department of Chemical Engineering and Materials Science, Chung-Ang University)
  • 최지연 (세종대학교 공과대학 나노공학과) ;
  • 유지연 (중앙대학교 공과대학 화학신소재공학부) ;
  • 김환용 (세종대학교 공과대학 나노공학과) ;
  • 정상영 (세종대학교 공과대학 나노공학과) ;
  • 허윤석 (세종대학교 공과대학 나노공학과) ;
  • 홍성철 (세종대학교 공과대학 나노공학과) ;
  • 이종휘 (중앙대학교 공과대학 화학신소재공학부)
  • Received : 2005.11.15
  • Accepted : 2005.12.27
  • Published : 2006.02.10

Abstract

If drugs are made from nanoparticles, their formulations can be more effective than the conventional ones. Especially, water insoluble drugs having low absorption rates into our body could show improvement in their adsorption and bioavailability by decreasing their particle sizes to nanometers. In this study, polyvinylpyrrolidone (PVP) and various sugars were employed as stabilizers for the nanoparticles of a water insoluble drug, Itraconazole. Nanoparticles were successfully produced by the wet slurry process for five days. Then, spray drying converted the aqueous dispersions into dry powders, and the redispersibility of dried nanoparticles into water was investigated. The effects of temperature, pressure, and flow rate were studied to understand the importance of processing variables on redispersibility. It was found in particle size analysis that nanoparticles containing sugars have better redispersibility than those without sugars. Additionally, the mainly spherical morphology of dried nanoparticles was identified by SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy).

약물입자들을 나노크기로 만들어 이용하면 기존 제형에 비해 효과적일 수 있다. 특히 생체 내 낮은 흡수율을 가진 난용성 약물들은 그 입자의 크기가 감소함에 따라 흡수율과 생체이용률이 높아질 수 있다. 본 연구에서는 난용성 약물인 이트라코나졸의 나노입자를 안정화시키기 위하여 폴리비닐피롤리돈(PVP)과 다양한 당을 안정화제로 사용하였다. 당으로 안정화된 이트라코나졸 나노입자는 5일 동안의 습식분쇄 공정으로 성공적으로 제조되었다. 그 후 얻어진 액상의 입자를 분무 건조하고 그 건조분말의 재분산성을 알아보았다. 분무 건조 시 가공 변수의 효과를 알아보기 위해 온도, 압력, 유속 등을 변화시켰다. 입자크기 분석을 통해 당을 함유한 나노입자 건조분산체가 그렇지 않은 경우보다 재분산도가 더 좋은 것을 알 수 있었다. 또한 주사전자현미경(SEM)과 원자현미경(AFM)을 이용하여 나노 결정입자들이 구형에 가까운 모양인 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. M. J. Grau, O. Kayser, and R. H. Muller, Int. J. Pharm., 196, 155 (2000) https://doi.org/10.1016/S0378-5173(99)00411-1
  2. C. Jacobs, O. Kayser, and R. H. Muller, Int. J. Pharm., 196, 161 (2000) https://doi.org/10.1016/S0378-5173(99)00412-3
  3. H. Terayama, K. Inada, H. Nakayama, S. Yasueda, and K. Esumi, Colloids Surf., A, 39, 159 (2000)
  4. R. H. Muller and C. Jacobs, Int. J. Pharm., 237, 151 (2002) https://doi.org/10.1016/S0378-5173(02)00040-6
  5. R. H. Muller, R. Becker, and R. Kruss, Proc. Intern. Symp. Control. Rel. Bioact., 22, 574 (1996)
  6. E. Merisko-Liversidge, P. Sarpotdar, J. Bruno, S. Hajj L. Wei, N. Peltier, J. Rake, J. M. Shaw, S. Pugh, L. Polin, J. Jones, T. Corbett, E. Cooper, and G. G. Liversidge, Pharm. Res., 13, 272 (1996) https://doi.org/10.1023/A:1016051316815
  7. G. G. Liversidge and P. Conzentino, Int. J. Plarm., 125, 309 (1995) https://doi.org/10.1016/0378-5173(95)00148-C
  8. G. G. Liversidge and K. C. Cundy, Int. J. Pharm., 125, 91 (1995) https://doi.org/10.1016/0378-5173(95)00122-Y
  9. K. S. Kim and N. B. Graham, J. Korean Ind Eng. Chem., 4, 221 (1998)
  10. N. S. Choi, Polymer(Korea), 4(1), 35 (1980)
  11. C. S. Cho, Polymer(Korea), 10(1), 2 (1986)
  12. S. Liedtke, S. Wissing, R. H. Muller, and K. Mader, Int. J. Pharm., 196, 183 (2000) https://doi.org/10.1016/S0378-5173(99)00417-2
  13. N. Z. Qureshi, M. Rogunova, E. V. Stepanov, G. Capaccio, A. Hiltner, and E. Baer, Macromol., 34, 3007 (2001) https://doi.org/10.1021/ma000584p
  14. R. Tuinier and H. N. W. Lekkerkerker, Polymer Density around a Sphere, Macromolecules, 35, 3312 (2002) https://doi.org/10.1021/ma0119474
  15. K. D. Berglund, T. M. Przybycien, and R. D. Tilton, Langmuir, 19, 2705 (2003) https://doi.org/10.1021/la026429g
  16. K. D. Berglund, T. M. Przybycien, and R. D. Tilton, Langmuir, 19, 2714 (2003) https://doi.org/10.1021/la026430f
  17. S. N. Magonov, V. Elings, and M.-H. Whangbo, Surf Sci., 375, L385 (1997) https://doi.org/10.1016/S0039-6028(96)01591-9
  18. G. Bar, M. Ganter, R. Brandsch, L. Delineau, and M. H. Whangbo, Langmuir, 16, 5702 (2000) https://doi.org/10.1021/la9913699
  19. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, and T. A. Witten, Nature, 389, 827 (1997) https://doi.org/10.1038/39827
  20. H. Tavana, C. N. C. Lam, K. Grundke, P. Friedel, D. Y. Kwok, M. L. Hair, and A. W. Neumann, Colloid Interface Sci., 279, 493 (2004) https://doi.org/10.1016/j.jcis.2004.06.090
  21. A. Bbhramian and A. Danesh, Colloid Interface Sci., 279, 206 (2004) https://doi.org/10.1016/j.jcis.2004.06.058
  22. Q. Zhao, Y. Liu and E. W. Abel, Colloid Interface Sci., 280, 174 (2004) https://doi.org/10.1016/j.jcis.2004.07.004
  23. P. E. Luner and E. Oh, Colloids Surf., A, 181, 31 (2001) https://doi.org/10.1016/S0927-7757(00)00805-0
  24. B. He, 1. Lee, and N. A. Patankar, Colloids Surf., A, 248, 101 (2004) https://doi.org/10.1016/j.colsurfa.2004.09.006
  25. I. H. Baek, T. H. Cho, J. H. Lee, and S. D. Park, J. Korean Ind. Eng. Chem., 15, 402 (2004)
  26. J. Cheon, J. Korean Ind. Eng. Chem., 15, 1 (2004)