Bacillus Subtilis Spores 불활성화 실험을 통한 오존, UV 공정의 소독 특성 평가

Evaluation of Disinfection Characteristics of Ozone, UV Processes for Bacillus Subtilis Spores Inactivation

  • Jung, Yeon Jung (Department of Environmental Engineering, Yonsei University, YIEST) ;
  • Oh, Byung Soo (Department of Environmental Engineering, Yonsei University, YIEST) ;
  • Kang, Joon-Wun (Department of Environmental Engineering, Yonsei University, YIEST)
  • 투고 : 2006.04.25
  • 심사 : 2006.06.13
  • 발행 : 2006.07.30

초록

Ozone/UV combined process is an effective technique to enhance generation of OH radical which is non-selective and powerful oxidant. The objective of this study is to evaluate the inactivation rates of B. subtilis spores by three candidate processes (ozone alone, UV alone, ozone/UV combined processes) at 4 and $20^{\circ}$ and to investigate the effects of OH radical on inactivation of B. subtilis spores. On the UV alone process, required UV dosages for lag phase and 3-log inactivation of B. subtilis spores were determined as $8.9mJ/cm^2$ and $47mJ/cm^2$. However, the inactivation of B. subtilis spores didn't occured beyond 4.5-log inactivation despite increasing UV dose. The inactivation of B. subtilis spores by ozone alone and ozone/UV combined process was investigated with ozone CT (Concentration of disinfectant ${\times}$ Contact time) concept. As a result, inactivation of B. subtilis spores by ozone/UV combined process was faster than by ozone alone, and especially $CT_{lag}$ value B. subtilis spores in the presence and absence of t-BuOH, OH radical scavenger, was investigated to evaluate effects of OH radical formed during ozone/UV combined process. We found that OH radical plays important roles on inactivation of B. subtilis spores.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. 강준원, 고도산화기술( AOT : Advanced oxidation technology)의 수 처리 응용, 대한화학회지, 39(6), pp. 35-42 (1999)
  2. 김혜선, 윤제용, 염철민, 국내 상수원수 및 하수에서 Cryptosporidium과 Giadia 포낭 검출, 한국물환경학회지, 16(5), pp. 585-594 (2000)
  3. 이경혁, 채선하, 엄재림, 최재헌, 안효원, 정수 처리를 위한 Bacillus subtilis spores 의 자외선 소독 특성 평가, 대한환경공학회지, 26(12), pp. 1389-1394 (2004)
  4. 이목영, 김도영, 조은주, 이의광, 오세종, 이채근, 하영칠, 1623 방법에 의한 서울시 상수도계통의 지아디아 및 크립토스포리디움 검출, 한국물환경학회지, 16(5), pp 595-608 (2000)
  5. 정현미, 수돗물의 미생물 관리, 모니터링인가, 처리인가, 한국물환경학회지, 18(3), pp. 229-235(2002)
  6. Barbeau, B., Boulos, L., Desjardins, R., Coallier, J. and Prevost, M., Examining the Use of Aerobic Spore-forming Bacteria to Assess the Efficiency of Chlorination, Water Res, 33(13), pp. 2941-2948 (1999) https://doi.org/10.1016/S0043-1354(99)00009-3
  7. Cho, M., Chung, H. M. and Yoon, J. Y., Quantative Evaluation of the Synergistic Sequential Inactivation of Bacillus Subtilis Spores with Ozone Followed by Chlorine, Appl. Environ. Micro., 37(10), pp. 2134-2138 (2003).
  8. Facile, N., Barbeau, B., Prevost, M. and Koudjonou, B., Evaluating Bacterial Aerobic Spores as a Surrogate for Giardia and Cryptosporidium Inactivation by Ozone, Water Res., 34(12), pp. 3238-3246 (2000) https://doi.org/10.1016/S0043-1354(00)00086-5
  9. Fayer, R., Cryptosporidium: A water-borne Zoonotic Parasite, Veterinary Parasitology, 126(1/2), pp. 37-56 (2004) https://doi.org/10.1016/j.vetpar.2004.09.004
  10. Foegeding, P. M., Ozone Inactivation of Bacillus and Clostridium Spores and the Importance of the Spores Coat to Resistance, Food Micro., 2, pp. 123-134 (1985) https://doi.org/10.1016/S0740-0020(85)80005-8
  11. Fricker, C. and Clancy, J., Crypro's Protocol Prospects, Water Quality international., 5-6, pp. 11-14 (1998)
  12. Hoigne, J. and Bader, H., Determination of Ozone in Water by the Indigo Method, Water Res., 15(4), pp. 449-456 (1981) https://doi.org/10.1016/0043-1354(81)90054-3
  13. Jakubowski, W., Boutros, S., Fayer, R., Ghiorse, W., Lechevallier, M., Rose, J., Schaub, S., Singh, A. and Stewart, M., Environmental Methods for Cryptosporidium, J. Am. Water Works Assn, 88, pp. 107-121 (1996)
  14. Larson, M. A. and Marinas, B. J., Inactivation of Bacillus Subtilis Spores with Ozone and Monochloramine, Water Res., 37, pp. 833-844 (2003) https://doi.org/10.1016/S0043-1354(02)00381-0
  15. Lechevallier, M. W. and Norton, W. D., Giardia and Cryptosporidium in Raw and Finished Water, J. Am. Water Woks Assn., 87(9), pp. 54-60 (1995) https://doi.org/10.1002/j.1551-8833.1995.tb06422.x
  16. Mysore, C., Benoit, B., Joan, R., Debra, H. and Michele, P., A Bench-scale Study to Evaluate the Impact of Water Quality Parameters on the Inactivation of Microbes in Water Treatment, In proceedings of the AWWA ACE, Washington, D.C. pp. 1-14 (2001)
  17. Parker, J. A. and Darby, J. L., Particle-associated Coliform in Secondary Effluents: Shielding from Ultraviolet Light Disinfection, Wat. Environ. Res., 67(7), pp. 1065-1075 (1995) https://doi.org/10.2175/106143095X133310
  18. Rennecker, J. L., Marinas, B. J., Rice, E. W. and Owens, J. H., Inactivation of Cryptosporidium Parvum Oocysts with Ozone, Water Res., 31(11), pp. 2481-2488 (1999)
  19. Staehelln, J. and Hoigne, J., Decomposition of Ozone in Water in the Presence of Organic Solutes Acting as Promoters and Inhibitors of Radical Chain Reactions, Environ. Sci. Technol., 19(12), pp. 1206-1213 (1985) https://doi.org/10.1021/es00142a012
  20. USEPA, National Primary Drinking Water Regulations: Long Term 2 Enhanced Surface Water Treatment Rule, [EPA-HQ- OW-2002-0039], pp. 83-87 (2005)
  21. USEPA, Ultraviolet Disinfection Guidance Manual, EPA 815-D-03-007, pp. 338-339 (2003)
  22. Young, S. B. and Setlow, P., Mechanisms of Bacillus Subtilis Spores Resistance to and Killing by Aqueous Ozone, J. Appl. Micro., 96, pp. 1133-1142 (2004) https://doi.org/10.1111/j.1365-2672.2004.02236.x