Establishment of an Assay for P2X7 Receptor-Mediated Cell Death

  • Lee, Song-Yi (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Jo, Sooyeon (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Lee, Ga Eun (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Jeong, Lak Shin (College of Pharmacy, Ewha Womans University) ;
  • Kim, Yong-Chul (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Park, Chul-Seung (Department of Life Science, Gwangju Institute of Science and Technology)
  • Received : 2006.05.22
  • Accepted : 2006.07.07
  • Published : 2006.10.31

Abstract

The $P2X_7$ receptor, an ATP-gated cation channel, induces cell death in immune cells and is involved in neurodegenerative diseases. Although the receptor plays various roles in these diseases, the cellular mechanisms involved are poorly understood and antagonists are limited. Here, the development of a cell-based assay for human $P2X_7$ receptor is reported. We established permanent lines of HEK 293 cells expressing a high level of $hP2X_7$ receptor. Functional activity of the $hP2X_7$ receptor was confirmed by whole-cell patch recording of ATP-induced ion currents. Prolonged exposure to ATP resulted in death of the $hP2X_7$-expressing HEK 293 cells and this cell death could be quantified. Two known $P2X_7$ antagonists, PPADS and KN-62, blocked ATP-induced death in a concentration-dependent manner. Thus, this assay can be used to screen for new antagonists of $hP2X_7$ receptors.

Keywords

Acknowledgement

Supported by : Korean Research Foundation

References

  1. Brockhaus, J., Dressel, D., Herold, S., and Deitmer, J. W. (2004) Purinergic modulation of synaptic input to Purkinje neurons in rat cerebellar brain slices. Eur. J. Neurosci. 19, 2221-2230 https://doi.org/10.1111/j.0953-816X.2004.03325.x
  2. Brough, D., Le Feuvre, R. A., Iwakura, Y., and Rothwell, N. J. (2002) Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. Mol. Cell. Neurosci. 19, 272-280 https://doi.org/10.1006/mcne.2001.1054
  3. Collo, G., Neidhart, S., Kawashima, E., Kosco-Vilbois, M., North, R. A., et al. (1997) Tissue distribution of the P2X7 receptor. Neuropharmacology 36, 1277-1283 https://doi.org/10.1016/S0028-3908(97)00140-8
  4. Deuchars, S. A., Atkinson, L., Brooke, R. E., Musa, H., Milligan, C. J., et al. (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J. Neurosci. 21, 7143-7152 https://doi.org/10.1523/JNEUROSCI.21-18-07143.2001
  5. Di Virgilio, F. (1995) The P2Z purinoceptor: an intriguing role in immunity, inflammation and cell death. Immunol Today. 16, 524-528 https://doi.org/10.1016/0167-5699(95)80045-X
  6. Galligan, J. J. and North, R. A. (2004) Pharmacology and function of nicotinic acetylcholine and P2X receptors in the enteric nervous system. Neurogastroenterol. Motil. 16, 64-70 https://doi.org/10.1111/j.1743-3150.2004.00478.x
  7. Guthrie, P. B., Knappenberger, J., Segal, M., Bennett, M. V., Charles A. C., et al. (1999) ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 19, 520-528 https://doi.org/10.1523/JNEUROSCI.19-02-00520.1999
  8. Khakh, B. S. (2001) Molecular physiology of P2X receptors and ATP signaling at synapses. Nat. Rev. Neurosci. 2, 165-174
  9. Khakh, B. S., Bao, X. R., Labarca, C., and Lester, H. A. (1999) Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 2, 322-330 https://doi.org/10.1038/7233
  10. Kwak, D. H., Kim, S. M., Lee, D. H., Kim, J. S., Kim, S. M., et al. (2005) Differential expression patterns of gangliosides in the ischemic cerebral cortex produced by middle cerebral artery occlusion. Mol. Cells 20, 354-360
  11. Le Feuvre, R., Brough, D., and Rothwell, N. (2002) Extracellular ATP and P2X7 receptors in neurodegeneration. Eur. J. Pharmacol. 447, 261-269 https://doi.org/10.1016/S0014-2999(02)01848-4
  12. Le Feuvre, R. A., Brough, D., Touzani, O., and Rothwell, N. J. (2003) Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J. Cereb. Blood Flow Metab. 23, 381-384 https://doi.org/10.1097/01.WCB.0000048519.34839.97
  13. Nedergaard, M., Ransom, B., and Goldman, S. A. (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci. 26, 523-530 https://doi.org/10.1016/j.tins.2003.08.008
  14. Parvathenani, L. K., Tertyshnikova, S., Greco, C. R., Roberts, S. B., Robertson, B., et al. (2003) P2X7 mediates superoxide production in primary microglia and is up-regulated in a transgenic mouse model of Alzheimer's disease. J. Biol. Chem. 278, 13309-13317 https://doi.org/10.1074/jbc.M209478200
  15. Rassendren, F., Buell, G. N., Virgino, C., Collo, G., North, R. A., et al. (1997) The permeabilizing ATP receptor, P2X7. Cloning and expression of a human cDNA. J. Biol. Chem. 272, 5482-5486 https://doi.org/10.1074/jbc.272.9.5482
  16. Roberson, S. J., Ennion, S. J., Evans, R. J., and Edwards, F. A. (2001) Synaptic P2X receptors. Curr. Opin. Neurobiol. 11, 378-386 https://doi.org/10.1016/S0959-4388(00)00222-1
  17. Scemes, E., Suadicani, S. O., and Spary, D. C. (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J. Neurosci. 20, 1435-1445 https://doi.org/10.1523/JNEUROSCI.20-04-01435.2000
  18. Virginio, C., MacKenzie, A., North, R. A., and Surprenant, A. (1999) Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J. Physiol. 519, 335-346 https://doi.org/10.1111/j.1469-7793.1999.0335m.x
  19. Wang, X., Arcuino, G., Takano, T., Lin, J., Peng, W. G., et al. (2004) P2X7 receptor inhibition improves recovery after spinal cord injury. Nat. Med. 10, 821-827 https://doi.org/10.1038/nm1082
  20. Wen, L. T., Caldwell, C. C., and Knowles, A. F. (2003) Poly (ADP-ribose) polymerase activation and changes in Bax protein expression associated with extracellular ATP-medeated apoptosis in human embryonic kidney 293-P2X7 cells. Mol. Pharmacol. 63, 706-713 https://doi.org/10.1124/mol.63.3.706
  21. Zhang, X. J., Zheng, G. G., Ma, X. T., Yang, Y. H., Li, G., et al. (2004) Expression of P2X7 in human hematopoietic cell lines and leukemia patients. Leuk. Res. 28, 1313-1322 https://doi.org/10.1016/j.leukres.2004.04.001