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1.  Introduction

The goal of this paper is to establish efficient production and 
inventory plan which satisfies customer’s demands with minimum 
overall costs including production costs, inventory holding costs 
and setup costs. In such competitive situations like these days, the 
production and inventory plan with minimum associated costs is an 
important issue, and modeling of the successful production plan 
can profit to the companies greatly. From the just-in-time (JIT) 
philosophy viewpoint, frequent setups are suitable for supplying the 
right part in right time and those can reduce inventory holding 
costs. However, as the number of setup grows, it can generate high 

setup costs and long setup times. Hence, we have to think over 
production sequence and production quantity together. Despite of 
the intimate relations between lot-sizing and production sequence, 
only few attempts have been made at the capacitated lot-sizing and 
scheduling problem (CLSP). Moreover, most of the existing re-
searches can not demonstrate the real world situations including 
sequence-dependent setup costs and setup times. In this paper, we 
consider the CLSPSD with a single machine producing multi-items 
over multiple periods.

The lot-sizing and scheduling problem can be classified into two 
different ways by the time period, i.e. macro-periods and micro 
period, (Drexl and Kimms). First is the discrete lot-sizing and 
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scheduling problem (DLSP), also called the “small bucket” 
problem. In the DLSP, the time periods are short and only one item 
can be produced per period. Second is the capacitated lot-sizing and 
scheduling problem (CLSP), known as the “big bucket” problem. 
Multiple items can be produced during a single period in the CLSP. 
In this research, we extend the lot-sizing and scheduling problem to 
the lot-sizing and scheduling problem with sequence-dependent 
setup costs and setup times. In the DLSP, Salomon et al. refor-
mulated the DLSP with sequence-dependent setup costs and setup 
times (DLSPSD) as traveling salesman problem with time windows 
(TSPTW) and developed the exact solution method. On the other 
hand, in the CLSP, Hasse and Sungmin et al. considered the CLSP 
with sequence- dependent setup costs. However, they assumed that 
setup times are zero. Another extensive works allowing product- 
dependent setup times excepting for the sequence-dependent setup 
costs are researched by Aras et al., Trigeiro et al. and Diaby et al. 
The CLSPSD is handled by Gupta and Magnusson, who provide 
the formulation and heuristic algorithm. However, the average 
deviation of the heuristic solutions from optimal solutions is too 
large. Therefore, we developed another simulated annealing 
algorithm which can be of good performance. The CLSP with setup 
times is the special case of the CLSPSD and it is known that the 
CLSP is NP-hard (Garey and Johnson). Therefore, the CLSPSD is 
also NP-hard. Many authors have developed heuristics to solve the 
CLSP and only a few attempts have been made to solve the CLSP 
optimally. Barany et al. reformulated the CLSP without setup times 
adding a strong valid inequality, and they optimally solved this 
problem using a Cutting Plane Algorithm. Eppen and Martin also 
optimally solved the multi-item capacitated lot-sizing problems 
using variable redefinition. Another various heuristic approaches 
were proposed by Mohan Gopalakrishnan et al., Kuik and Salomon 
and Ou Tang. In this paper, we reformulate the CLSPSD under the 
condition in which empty setup is not allowed, and develop the 
simulated annealing algorithm.

This paper is organized as follows. Section 2 describes the 
problem and mathematical formulation of the CLSPSD. The 
simulated annealing algorithm is explained in detail in section 3. In 
section 4, numerical examples are provided and we discuss their 
computational results. Finally, concluding remarks are drawn.

2.  Problem description and formulation

In this paper, the capacitated single-machine multi-item lot-sizing 
and scheduling problem is considered. Demand, d it , for item 

i= 1,...,N  over a time horizon t= 1,...,T  is given. These 
are dynamic and deterministic. All items must be produced on a 

single machine which has finite capacity. Machine capacity is 
expressed in units of time. More than one item is produced in a 
period and if different items are produced in a single machine, 
setup must take place. Setup times depend on the production 
sequence, so-called sequence-dependent setup times, and satisfy the 
triangular inequality, i.e. st ik+st kj≥st ij   for all 

i, j,k= 1,...,N , where N is the number of different items to be 
considered. Total costs include production costs, inventory holding 
costs, and setup costs. We assume that the production costs are 
uniform regardless of items. Setup costs also depend on the 
production-sequence. The object of this problem is to find feasible 
production plan with minimum (or close to the minimum) total 
costs. We suppose that the setup always starts at the beginning of 
the period. In other words, we do not allow the empty setup. 
Furthermore, setup is kept on over idle time, i.e. setup state is not 
lost after idle time. We assume that machine is initially setup for 
some item and shortages and back-logging are not allowed. The 
following notation and decision variables are used to present 
formulation.

[Notation]
 N the number of different items
 T the number of periods
 M big number
Ct the capacity of machine available in period t. Machine 

capacity is limited on time consumption.
 d it the demand for item i at the period t
 h i holding cost which is incurred to hold one unit of item i at 

the end of period
 sc ij the setup cost when production change from item i to j
 st ij the setup time when production change from item i to j
 p i the time which is needed to produce one unit of item I

[Decision variables]
 q it  the quantity of item i to be produced in period  t
 I it the inventory of item i at the end of period t 

( I i0= I iT=0)

 z it the machine state in period t : z it=1 , if  the machine is 
used to produce item i in period t

 x ijt the setup state in period t : x ijt=1  if the machine is setup 
from product i to j in period t. 0, otherwise

 y ijt the setup state between period t and period t+1 : y ijt=1  if 
the machine is setup from product i to j at the beginning of 
period t+1. 0, otherwise
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[CLSPSD]
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y jit≤z it ∀i, j, t  (8)

∑
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x ijt≤|S |- 1 S⊂N,2 ≤|S | ≤N-1,∀t  (9)
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j
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y ijt≤1 ∀i, j, t ( i≠j)  (11)

z it≤∑
j
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∑
i
∑
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y ijt=1 ∀t ( t≠T )  (13)

x ijt,y ijt,z it∈ {0,1} ∀i, j, t  (14)
q it,I it≥0 ∀i, t  (15)

The objective function (1) minimizes the sum of inventory 
holding costs and sequence-dependent setup costs. Constraints (2) 
are the inventory balancing constraints. Constraints (3) are the 
capacity constraints. We already mentioned that the machine 
capacity is defined as available operational time. Thus, finite 
machine capacity is further reduced by sequence-dependent setup 
times. Constraints (4) guarantee that production takes place only if 
the machine is setup for an item. Constraints (5), (6), (10) and (11) 
specify that exactly one setup among any setups from each of N  
items, j=1,…,N, to fixed item i, takes place in period t when item j 
is produced. Similarly, constraints (7), (8), (10) and (12) represent 
that just one setup among any setups from fixed item i to each of N  
items, j=1,…,N, occurs only if item i is produced in period t. 
Constraints (9) are subtour elimination constraints: they prevent the 
subtours can be generated during finding a production-sequence. 
Constraints (13) make sure that at least one item has to be produced 
per period. Finally, constraints (14) and (15) impose the binary and 
continuous conditions on the variables, respectively.

3.  The simulated annealing algorithm

The simulated annealing algorithm was introduced by Kirkpatrick 
in order to solve combinatorial optimization problems. Simulated 

annealing technique uses an analogous cooling operation for 
transforming a poor, unordered solution into an ordered, desirable 
solution, so as to optimize the objective function. The basic idea is 
to choose a neighbor randomly, and then the neighbor replaces the 
incumbents with probability 1 if it has a better objective value, and 
with some probability strictly between 0 and 1 if it has a worse 
objective value. Therefore, it is possible to escape from the traps of 
local optima. The following elements are considered in the 
simulated annealing algorithm : 

(1) A description of possible problem solutions, so-called 
configuration.

(2) An objective function to measure how good any given 
placement configuration is.

(3) A set of random changes that will permit us to reach all 
feasible configurations. 

(4) Cooling schedule to anneal the problem from a random 
solution to a good, frozen, placement. 

3.1  Generation of an initial solution

To generate an initial solution, first, we decide the production 
lot, and determine the production sequence afterward.

(1) Determination of an initial production lot : We fix the 
sequence-dependent setup times to the average setup times 
of all setup times, st 0 , and ignore the sequence dependency. 
We settle the production quantity of item i in period t, q it , 
to the demand of the item i in period t. After that, compute 
the total capacity used in period t. If there are any periods 
which violate the machine capacity, we modify the current 
production lot. Starting from the last period, excess capacity, 
so called overtime, is moved to the preceding period having 
available capacity. We first move the item having the lowest 
unit inventory holding costs and only shift the amount of 
production lots that are needed to get rid of overtime. We 
repeat this procedure until overtime has been eliminated 
overall periods. 

(2) Scheduling the production sequence : We consider a 
scheduling of the production sequence in each period as the 
TSP and determine production sequence by applying a 
nearest neighbor algorithm (Cook et al.). Following is the 
detailed sequencing procedure. First, we generate all 
possible product pairs which are consist of two items 
representing the item which are produced in first and at last 
in a period respectively. Second, find the sequence which 
has minimum setup costs. Starting at first item, choose the 
next item which has the minimum setup costs while 
changing over from a previous item. Repeat this process 
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until all items have been selected, finally reach the last item. 
We store the cheapest cost to the last item in period t among 
those setup costs generated by all possible pairs. Between 
consecutive periods, select the lowest setup costs among 
possible setup costs. We also store the cheapest cost to the 
first item in next period. Repeat the previous processes in 
each period until reaching the last period. The cheapest 
accumulated setup cost out of the all setup costs at last items 
which are produced in last period is the total setup costs, and 
this sequence is the production sequence. 

(3) Feasibility check : We use the feasible solution as an initial 
solution. Thus, we check the periods whether violate the 
capacity constraints or not. If there are no periods occurring 
excessive amount of the machine capacity, called overtimes, 
current solution is an initial solution. If not, we start from 
the last period, and shift excess production lot to the 
immediately preceding period having available capacity. An 
item which has the lowest unit inventory holding cost is 
shifted first. We only move the amount of the production 
lots that are needed to eliminate overtime. We repeat this 
procedure until overtime has been eliminated in all periods. 
This is the initial solution. And compute the total costs.

3.2  Searching for a neighboring solution

Similar to the procedure of generating an initial solution, first we 
generate a neighboring production lot by moving production quan-
tities, and then schedule the production sequence.

Generating a neighboring production lot : We use the amount of 
production quantities of item i which are produced in period t as a 
configuration for generating a neighboring production lot. Under 
the current production lots, we rearrange production lots and 
generate a neighboring production lot using following process. 
Before rearranging production lots, we randomly choose period t 1  
and item i which is produced in period t 1 . After selecting moving 
period t 1  and moving item, m i , we decide how many production 
lots move to which period, so-called target period. The m i  can be 
moved to earlier or later period. 

(1) When the total production quantity of m i  from period 1 to 
period t 1  is equal to the sum of demands of m i  from period 
1 to period t 1  : Production lot is only moved to the imme-
diately earlier period, t 2 , which has an available capacity.

(2) When the total production quantity of m i  from period 1 to 
period t 1  is larger than the sum of demands of m i  from 
period 1 to period t 1 : Find the right after period having an 
available capacity, t 1 , and check whether the production 

quantity from period t 1+1  to period t l-1  can satisfy the 
demand from period t 1+1  to period t l-1 . If production 
lots satisfy those demands, the target period is t 1 . If not, 
target period is the right earlier period which has available 
capacity.

Now, we decide the production lots to be moved. Let the product 
quantity of m i  in period t 1  is q mit 1 , the available capacity in 

target period t 2  is slack t , and △ is the production lots to be 
moved.

(1) If target period is earlier period : 
△= min {q it,slack t 2 }

(2) If target period is later period :

△= min {q it,slack t 2, ∑
t 1

τ= 1
q iτ- ∑

t 1

τ= 1
d iτ}

After obtaining neighboring production lot, we determine the 
production sequence based on neighboring production quantities 
and check the feasibility of neighboring solution. This procedure is 
same as those which are used in the procedure of generating an 
initial solution. 

3.3  Cooling schedule

We allow that the worse solution moves restrictively by intro-
ducing the probability of acceptance, PA. The PA is calculated as 
follows. Let Q is an initial solution, Q' is a neighboring solution, 
C(Q) is objective value of a current solution, and C(Q') is objective 
value of a neighboring solution. Annealing temperature T is 
reduced when the neighboring solution increase the objective value. 
A new temperature is a ×T  with reduction factor a (0<a<1).

PA=exp[
C(Q)-C(Q')

C(Q)×T
]

We compare PA with a random number and if PA is greater than 
random number, we accept a worse neighboring solution.

3.4  A  stop criterion

We complete the algorithm when the whole iteration is over the 
MAX_ITER or the number of iteration in a state of no improvement 
of solution value is over the fixed number, MAX_ITER

a
.

4.  Computational results

To experiment the proposed algorithm, we ran a C-language in a 
PC with Pentium 4 (2.53GHz) with 512 MB RAM. We use 
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CLPEX 9.0 to compare our heuristic solution with optimal solution. 
We randomly generate total 144 instances. The number of items 
range from 3 to 10 and the number of periods ranges from 3 to 10, 
and 20. We get the rest of the input data as follows : 

(1) Demands of item i in period t, d it , are chosen out of the 
interval [20,60] with uniform distribution. 

(2) A setup time from item i to j, st ij ( i≠j), is randomly 
chosen out of the interval [2,10], and setup time within same 
items is zero, i.e. st ii=0 . Setup times of a changeover from 
item i to j is same as the setup times of a changeover from 
product j to i, i.e. st ij=st ji, for all i,j. The choice of setup 
times is over so that all triangle inequalities are satisfied.

(3) We suppose the setup costs are proportional to setup times, 
i.e. st ij= f sc×st ij , for all i,j. The parameter f sc  is 50.

(4) Inventory holding costs for each items, h i , are randomly 
chosen out of the interval [2,10] with uniform distribution. 

(5) Machine capacity, C, is determined according to :
C={40×(number of items)} ÷ u

u is the capacity utilization and systematically differs from 
between 0.4 and 0.6.

(6) We set the quantity of a (Boltzmann’s constant) to 0.99 by 
the testing algorithms many times and select the best one 
which gives the best result.

(7) MAX_ITER is 2000 and MAX_ITER
a
  is 500.

<Table 1> shows the results of our study. Let C* is the optimal 
value obtained by the CPLEX, and C is the objective value 
obtained by running the simulated annealing algorithm. And the 
GAP (%) is calculated as (C-C*)/C* ×100. Optimal value represent 
the optimal solution which is obtained from using the CPLEX. 
Solution value is the objective value which is obtained from 
solving the simulated annealing algorithm, and CPU time (sec) is 
running times which are needed to execute a simulated annealing 
algorithm. The computational results demonstrate that the average 
GAP is 1.39% when u=0.4 and 1.95% in case of u=0.6. These 
results verify that our algorithm performs well. Average running 
time is 34.88 sec. and 41.57 sec. respectively. If problem sizes 
grow bigger, getting an optimal solution using the CPLEX takes 
long time and we cannot obtain an optimal solution within certain 
time. In this case, the optimal value marked by'*'. On the other 
hand, our algorithm can obtain solutions in reasonable times and 
we also expect our algorithm will provide good results in the big 
size problems even though we cannot compare with the optimal 
solution. Finally, we compare the performance of the simulated 
annealing algorithm and the greedy heuristic, called ISI heuristic, 
which is suggested by Diwakar Gupta and Thorkell Magnusson. 

<Table 2> shows the comparison of the solutions obtained from 
simulated annealing algorithm and the solutions obtained from ISI 
heuristic. We apply the same instances which are used in simulated 
annealing algorithm when u is 0.6 to the ISI heuristic. Average 
GAP of our solution is approximately 2%, and that from ISI 
heuristic is approximately 8%. This result shows that our algorithm 
improves the solution value and provide near optimal solution.

Table 1.  Summary of the computational results 

u=0.4 u=0.6
period CPU time(sec) GAP(%) CPU time(sec) GAP(%)

3 18.88 1.033  20.62 1.165
4 22.03 1.147  24.52 2.529
5 18.95 1.666  29.18 1.101
6 23.71 0.930  22.73 1.193
7 34.00 1.238  39.34 2.257
8 36.29 2.208  34.71 2.396
9 38.73 0.919  40.14 1.859

10 41.97 1.997  53.41 3.066
20 79.36 * 109.51 *

Table 2.  Comparison of the performance(GAP(%))

period simulated annealing ISI Heuristic
3 1.165  6.744
4 2.529 10.907
5 1.101  6.162
6 1.193  6.928
7 2.257  7.910
8 2.396  8.003
9 1.859  8.304

10 3.066 10.365
total 1.947  8.165

5.  Concluding remarks

In this paper, we reformulated the CLSPSD and have introduced 
the simulated annealing algorithm to solve the CLSPSD. It is 
shown that the simulated annealing algorithm performs well and 
gives good feasible solution values in reasonable time. The overall 
average gap is approximately 2%.

Even though simulated annealing methods provide good per-
formance, its computational times are slower than the running time 
through the CPLEX when problem sizes are small. Concerning 
further researches, it is still possible to improve computational time 
by reforming the procedure of generating neighboring solutions. 
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Moreover, it could be of concern to research the chance of 
improving sequencing procedure. As based on the formulation 
suggested in this paper, it will be possible to obtain optimal 
solution or lower bound using the column generation method.
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