Overexpression in Arabidopsis of a Plasma Membrane-targeting Glutamate Receptor from Small Radish Increases Glutamate-mediated Ca2+ Influx and Delays Fungal Infection

  • Kang, Seock (Department of Biological Sciences, Seoul National University) ;
  • Kim, Ho Bang (Department of Biological Sciences, Seoul National University) ;
  • Lee, Hyoungseok (Department of Biological Sciences, Seoul National University) ;
  • Choi, Jin Young (Department of Biological Sciences, Seoul National University) ;
  • Heu, Sunggi (Plant Pathology Division, National Institute of Agricultural Science and Technology, Rural Development Administration) ;
  • Oh, Chang Jae (Department of Biological Sciences, Seoul National University) ;
  • Kwon, Soon Il (Department of Microbiology and Plant Pathology, University of Missouri, Columbia) ;
  • An, Chung Sun (Department of Biological Sciences, Seoul National University)
  • Received : 2006.03.17
  • Accepted : 2006.05.16
  • Published : 2006.06.30

Abstract

Ionotropic glutamate receptors (iGluRs) are ligand-gated nonselective cation channels that mediate fast excitatory neurotransmission. Although homologues of the iGluRs have been identified in higher plants, their roles are largely unknown. In this work we isolated a full-length cDNA clone (RsGluR) encoding a putative glutamate receptor from small radish. An RsGluR:mGFP fusion protein was localized to the plasma membrane. In Arabidopsis thaliana overexpressing the fulllength cDNA, glutamate treatment triggered greater $Ca^{2+}$ influx in the root cells of transgenic seedlings than in those of the wild type. Transgenic plants exhibited multiple morphological changes such as necrosis at their tips and the margins of developing leaves, dwarf stature with multiple secondary inflorescences, and retarded growth, as previously observed in transgenic Arabidopsis overexpressing AtGluR3.2 [Kim et al. (2001)]. Microarray analysis showed that jasmonic acid (JA)-responsive genes including defensins and JA-biosynthetic genes were up-regulated. RsGluR overexpression also inhibited growth of a necrotic fungal pathogen Botrytis cinerea possibly due to up-regulation of the defensins. Based on these results, we suggest that RsGluR is a glutamate-gated $Ca^{2+}$ channel located in the plasma membrane of higher plants and plays a direct or indirect role in defense against pathogen infection by triggering JA biosynthesis.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. (1990) Basic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Benjamins, R., Ampudia, C. S., Hooykaas, P. J., and Offringa, R. (2003) PINOID-mediated signaling involves calcium-binding proteins. Plant Physiol. 132, 1623-1630 https://doi.org/10.1104/pp.103.019943
  3. Chiu, J. C., Brenner, E. D., DeSalle, R., Nitabach, M. N., Holmes, T. C., et al. (2002) Phylogenetic and expression analysis of the glutamate-receptor-like gene family in Arabidopsis thaliana. Mol. Biol. Evol. 19, 1066-1082 https://doi.org/10.1093/oxfordjournals.molbev.a004165
  4. Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  5. Cutler, S. R. and Somerville, C. R. (2005) Imaging plant cell death: GFP-Nit1 aggregation marks an early step of wound and herbicide induced cell death. BMC Plant Biol. 5, 4. (URL http://www.biomedcentral.com/1471-2229/5/4) https://doi.org/10.1186/1471-2229-5-4
  6. Daniels, M. J., Chaumont, F., Mirkov, T. E., and Chrispeels, M. J. (1996) Characterization of a new vacuolar membrane aquaporin sensitive to mercury at a unique site. Plant Cell 8, 587-599 https://doi.org/10.1105/tpc.8.4.587
  7. Davenport, R. (2002) Glutamate receptors in plants. Ann. Bot. 90, 549-557 https://doi.org/10.1093/aob/mcf228
  8. Demidchik, V., Essah, P. A., and Tester, M. (2004) Glutamate activates cation currents in the plasma membrane of Arabidopsis root cells. Planta 219, 167-175 https://doi.org/10.1007/s00425-004-1207-8
  9. Dennison, K. L. and Spalding, E. P. (2000) Glutamate-gated calcium fluxes in Arabidopsis. Plant Physiol. 124, 1511-1514 https://doi.org/10.1104/pp.124.4.1511
  10. Devoto, A. and Turner, J. G. (2005) Jasmonate-regulated Arabidopsis stress signaling network. Physiol. Plant. 123, 161-172 https://doi.org/10.1111/j.1399-3054.2004.00418.x
  11. Dingledine, R., Borges, K., Bowie, D., and Traynelis, S. F. (1999) The glutamate receptor ion channels. Pharmacol. Rev. 51, 7-61
  12. Dubos, C., Huggins, D., Grant, G. H., Knight, M. R., and Campbell, M. M. (2003) A role for glycine in the gating of plant NMDA-like receptors. Plant J. 35, 800-810 https://doi.org/10.1046/j.1365-313X.2003.01849.x
  13. Gleave, A. P. (1992) A versatile binary vector system with a TDNA organizational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 1203-1207 https://doi.org/10.1007/BF00028910
  14. Hollmann, M., Hartley, M., and Heinemann, S. (1991) $Ca^{2+}$ permeability of KA-AMPA-gated glutamate receptor channels depends on subunit composition. Science 252, 851-853 https://doi.org/10.1126/science.1709304
  15. Kim, S. A., Kwak, J. M., Jae, S. K., Wang, M. H., and Nam, H. G. (2001) Overexpression of the AtGluR2 gene encoding an Arabidopsis homolog of mammalian glutamate receptors impairs calcium utilization and sensitivity to ionic stress in transgenic plants. Plant Cell Physiol. 42, 74-84 https://doi.org/10.1093/pcp/pce008
  16. Kim, T.-J., Ye, E.-A., and Jeon, C.-J. (2006) Distribution of AMPA glutamate receptor GluR1 subunit-immunoreactive neurons and their co-localization with calcium-binding proteins and GABA in the mouse visual cortex. Mol. Cells 21, 34-41
  17. Kim, Y. J., Kim, H. B., Baek, E. H., Heu, S., and An, C. S. (2005) Constitutive expression of two endochitinases from root nodules of Elaeagnus umbellata confers resistance on transgenic Arabidopsis plants against the fungal pathogen Botrytis cinerea. J. Plant Biol. 48, 39-46 https://doi.org/10.1007/BF03030563
  18. Kutz, A., Muller, A., Hennig, P., Kaiser, W. M., Piotrowski, M., et al. (2002) A role for nitrilase 3 in the regulation of root morphology in sulphur-starving Arabidopsis thaliana. Plant J. 30, 95-106 https://doi.org/10.1046/j.1365-313X.2002.01271.x
  19. Kwon, S. I. and An, C. S. (2003) Cloning and expression of mitochondrial MnSOD from the small rasish (Raphanus sativus L.). Mol. Cells 16, 194-200
  20. Lacombe, B., Becker, D., Hedrich, R., DeSalle, R., Hollmann, M., et al. (2001) The identity of plant glutamate receptors. Science 292, 1486-1487
  21. Lam, H. M., Chiu, J., Hsieh, M. H., Meisel, L., Oliveira, I. C., et al. (1998) Glutamate-receptor genes in plants. Nature 396, 125-126 https://doi.org/10.1038/24066
  22. Lee, H., Hur, C.-G., Oh, C. J., Kim, H. B., Park, S.-Y., et al. (2004) Analysis of the root nodule-enhanced transcriptome from soybean. Mol. Cells 18, 53-62
  23. Li, J., Zhu, S., Song, X., Shen, Y., Chen, H., et al. (2006) A rice glutamate receptor-like gene is critical for the division and survival of individual cells in the root apical meristem. Plant Cell 18, 340-349 https://doi.org/10.1105/tpc.105.037713
  24. Loque, D., Ludewig, U., Yuan, L., and von Wiren, N. (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol. 137, 671-680 https://doi.org/10.1104/pp.104.051268
  25. Madden, D. R. (2002) The structure and function of glutamate receptor ion channels. Nat. Rev. Neurosci. 3, 91-101
  26. Marsh, D. R., Holmes, K. D., Dekaban, G. A., and Weaver, L. C. (2001) Distribution of an NMDA receptor : GFP fusion protein in sensory neurons is altered by a C-terminal construct. J. Neurochem. 77, 23-33 https://doi.org/10.1046/j.1471-4159.2001.t01-1-00182.x
  27. Marshall, J., Molloy, R., Moss, G. W. J., Howe, J. R., and Hughes, T. E. (1995) The jellyfish green fluorescent protein - a new tool for studying ion-channel expression and function. Neuron 14, 211-215 https://doi.org/10.1016/0896-6273(95)90279-1
  28. Meyerhoff, O., Muller, K., Roelfsema, M. R., Latz, A., Lacombe, B., et al. (2005) AtGLR3.4, a glutamate receptor channel-like gene is sensitive to touch and cold. Planta 222, 418-427 https://doi.org/10.1007/s00425-005-1551-3
  29. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant. 15, 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  30. Penninckx, I. A. M. A., Eggermont, K., Schenk, P. M., Van Den Ackerveken, G., Cammue, B. P. A., et al. (2003) The Arabidopsis mutant iop1 exhibits induced over-expression of the plant defensin gene PDF1.2 and enhanced pathogen resistance. Mol. Plant Pathol. 4, 479-486 https://doi.org/10.1046/j.1364-3703.2003.00193.x
  31. Peterhänsel, C., Freialdenhoven, A., Kurth, J., Kolsch, R., and Schulze-Lefert, P. (1997) Interaction analyses of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. Plant Cell 9, 1397-1409 https://doi.org/10.1105/tpc.9.8.1397
  32. Samac, D. A., Hironaka, C. M., Yallaly, P. E., and Shah, D. M. (1990) Isolation and characterization of the genes encoding basic and acidic chitinase in Arabidopsis thaliana. Plant Physiol. 93, 907-914 https://doi.org/10.1104/pp.93.3.907
  33. Seeburg, P. H. (1993) The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16, 359-365 https://doi.org/10.1016/0166-2236(93)90093-2
  34. Sistrunk, M. L., Antosiewicz, D. M., Purugganan, M. M., and Braam, J. (1994) Arabidopsis TCH3 encodes a novel $Ca^{2+}$ binding protein and shows environmentally induced and tissue- specific regulation. Plant Cell 6, 1553-1565 https://doi.org/10.1105/tpc.6.11.1553
  35. Thomma, B. P. H. J., Cammue, B. P. A., and Thevissen, K. (2002) Plant defensins. Planta 216, 193-202 https://doi.org/10.1007/s00425-002-0902-6
  36. Wo, Z. G. and Oswald, R. E. (1995) Unraveling the modular design of glutamate-gated ion channels. Trends Neurosci. 18, 161-168 https://doi.org/10.1016/0166-2236(95)93895-5
  37. Zhou, L., Bartel, B., and Thornburg, R. (1996) Nucleotide sequence of a pathogen induced nitrilase gene from Arabidopsis thaliana: Nit2 (Accession No. U47114). Plant Physiol. 110, 1048