Effects of Recombinant Imperatoxin A (IpTxa) Mutants on the Rabbit Ryanodine Receptor

  • Seo, In-Ra (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Choi, Mu-Rim (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Park, Chul-Seung (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Kim, Do Han (Department of Life Science, Gwangju Institute of Science and Technology)
  • Received : 2006.09.01
  • Accepted : 2006.10.23
  • Published : 2006.12.31

Abstract

Imperatoxin A ($IpTx_a$), a 3.7 kDa peptide from the African scorpion Pandinus imperator, is an agonist of the skeletal muscle ryanodine receptor (RyR1). In order to study the structure of the toxin and its effect on RyR1, $IpTx_a$ cDNA was PCR-amplified using 3 pairs of primers, and the toxin was expressed in E. coli. The toxin was further purified by chromatography, and various point mutants in which basic amino acids were substituted by alanine were prepared by site-directed mutagenesis. Studies of single channel properties by the planar lipid bilayer method showed that the recombinant $IpTx_a$ was identical to the synthetic $IpTx_a$ with respect to high-performance liquid chromatography mobility, amino acid composition and specific effects on RyR1. Mutations of certain basic amino acids ($Lys^{19}$, $Arg^{23}$, and $Arg^{33}$) dramatically reduced the capacity of the peptide to activate RyRs. A subconductance state predominated when $Lys^8$ was substituted with alanine. These results suggest that some basic amino acid residues in $IpTx_a$ are important for activation of RyR1, and that $Lys^8$ plays an important role in regulating the gating mode of RyR1.

Keywords

Acknowledgement

Supported by : Korean Ministry of Science and Technology

References

  1. Buck, E., Zimanyi, I., Abramson, J. J., and Pessah, I. N. (1992) Ryanodine stabilizes multiple conformational states of the skeletal muscle calcium release channel. J. Biol. Chem. 267, 23560−23567
  2. Bull, R., Marengo, J. J., Suarez-Isla, B. A., Donoso, P., Sutko, J. L., et al. (1989) Activation of calcium channels in sarcoplasmic reticulum from frog muscle by nanomolar concentrations of ryanodine. Biophys. J. 56, 749−756 https://doi.org/10.1016/S0006-3495(89)82722-5
  3. Callaway, C., Seryshev, A., Wang, J. P., Slavik, K. J., Needleman, D. H., et al. (1994) Localization of the high and low affinity [$^{3}H$]ryanodine binding sites on the skeletal muscle $Ca^{2+}$ release channel. J. Biol. Chem. 269, 15876−15884
  4. Coronado, R., Morrissette, J., Sukhareva, M., and Vaughan, D. M. (1994) Structure and function of ryanodine receptors. Am. J. Physiol. 266, C1485−1504
  5. Dudley, S. C., Todt, H., Lipkind, G., and Fozzard, H. A. (1995) A muconotoxin, insensitive $Na^{+}$ channel mutant: possible localization of a binding site at the outer vestibule. Biophys. J. 69, 1657−1665
  6. Dulhunty, A. F., Curtis, S. M., Watson, S., Cengia, L., and Casarotto, M. G. (2004) Multiple actions of imperatoxin A on ryanodine receptors: interactions with the II-III loop 'A' fragment. J. Biol. Chem. 279, 11853−11862 https://doi.org/10.1074/jbc.M310466200
  7. El-Hayek, R., Lokuta, A. J., Arevalo, C., and Valdivia, H. H. (1995) Peptide probe of ryanodine receptor function. Imperatoxin A, a peptide from the venom of the scorpion Pandinus imperator, selectively activates skeletal-type ryanodine receptor isoforms. J. Biol.Chem. 270, 28696−28704 https://doi.org/10.1074/jbc.270.48.28696
  8. Fajloun, Z., Kharrat, R., Chen, L., Lecomte, C., Di Luccio, E., et al. (2000) Chemical synthesis and characterization of maurocalcine, a scorpion toxin that activates $Ca^{2+}$ release channel/ ryanodine receptors. FEBS Lett. 469, 179−185
  9. Green, D., Pace, S., Curtis, S. M., Sakowska, M., Lamb, G. D., et al. (2003) The three-dimensional structural surface of two beta-sheet scorpion toxins mimics that of an alpha-helical dihydropyridine receptor segment. Biochem J. 370, 517−527 https://doi.org/10.1042/BJ20021488
  10. Gurrola, G. B., Arevalo, C., Sreekumar, R., Lokuta, A. J., Walker, J. W., et al. (1999) Activation of ryanodine receptors by imperatoxin A and a peptide segment of the II-III loop of the dihydropyridine receptor. J. Biol. Chem. 274, 7879−7886 https://doi.org/10.1074/jbc.274.12.7879
  11. Kim, D. H., Ohnishi, S. T., and Ikemoto, N. (1983) Kinetic studies of calcium release from sarcoplasmic reticulum in vitro. J. Biol. Chem. 258, 9662−9668
  12. Kim, O. T., Ahn, J. C., Hwang, S. J., and Hwang, B. (2005) Cloning and expression of a farnesyl diphosphate synthase in Centella asiatica (L.) Urban. Mol. Cells 19, 294−299
  13. Lee, C. W., Lee, E. H., Takeuchi, K., Takahashi, H., Shimada, I., et al. (2004) Molecular basis of the high-affinity activation of type 1 ryanodine receptors by imperatoxin A. Biochem J. 377, 385−394 https://doi.org/10.1042/BJ20031192
  14. Lindsay, A. R., Tinker, A., and Williams, A. J. (1994) How does ryanodine modify ion handling in the sheep cardiac sarcoplasmic reticulum $Ca^{2+}$-release channel. J. Gen. Physiol. 104, 425−447 https://doi.org/10.1085/jgp.104.3.425
  15. McPherson, P. S. and Campbell, K. P. (1993) The ryanodine receptor/$Ca^{2+}$ release channel. J. Biol. Chem. 268, 13765−13768
  16. Meissner, G. (1994) Ryanodine receptor/$Ca^{2+}$ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 56, 485−508
  17. Miller, C. (1995) The charybdotoxin family of $K^{+}$ channelblocking peptides. Neuron 15, 5−10 https://doi.org/10.1016/0896-6273(95)90057-8
  18. Ogawa, Y. (1994) Role of ryanodine receptors. Crit. Rev. Biochem. Mol. Biol. 29, 229−274
  19. Park, C. S., Sharon, F. H., and Miller, C. (1991) Design, synthesis, and functional expression of a gene for charybdotoxin, a peptide blocker of $K^{+}$ channels. Biochemistry 88, 2046−2050
  20. Pessah, I. N., Stambuk, R. A., and Casida, J. E. (1987) $Ca^{2+}$-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by $Mg^{2+}$ , caffeine, and adenine nucleotides. Mol Pharmacol. 31, 232−238
  21. Simeoni, I., Rossi, D., Zhu, X., Garcia, J., Valdivia, H. H., et al. (2001) Imperatoxin A ($IpTx_{a}$) from Pandinus imperator stimulates [$^{3}H$]ryanodine binding to RyR3 channels. FEBS Lett. 508, 5−10 https://doi.org/10.1016/S0014-5793(01)03013-7
  22. Sutko, J. L., Airey, J. A., Welch, W., and Ruest, L. (1997) The pharmacology of ryanodine and related compounds. Pharmacol. Rev. 49, 53−98
  23. Tripathy, A., Resch, W., Xu, L., Valdivia, H. H., and Meissner, G. (1998) Imperatoxin A Induces Subconductance States in $Ca^{2+}$ Release Channels (Ryanodine Receptors) of Cardiac and Skeletal Muscle. J. Gen. Physiol. 111, 679−690
  24. Wier, W. G., Egan, T. M., Lopez-Lopez, J. R., and Balke, C. W. (1994) Local control of excitation-contraction coupling in rat heart cells. J. Physiol. 474, 463−471
  25. Zamudio, F. Z., Gurrola, G. B., Arevalo, C., Sreekumar, R., Walker, J. W., et al. (1997) Primary structure and synthesis of imperatoxin A ($IpTx_{a}$), a peptide activator of $Ca^{2+}$ release channels/ryanodine receptors. FEBS. Lett. 405, 385−389
  26. Zhu, X., Zamudio, F. Z., Olbinski, B. A., Possani, L. D., and Valdivia, H. H. (2004) Activation of skeletal ryanodine receptors by two novel scorpion toxins from Buthotus judaicus. J. Biol. Chem. 279, 26588−26596 https://doi.org/10.1074/jbc.M403284200