Quantitative Evaluation of the Mode of Microtubule Transport in Xenopus Neurons

  • Kim, Taeyong (Department of Life Science, Gwangju Institute of Science and Technology) ;
  • Chang, Sunghoe (Department of Life Science, Gwangju Institute of Science and Technology)
  • 투고 : 2005.08.17
  • 심사 : 2005.11.25
  • 발행 : 2006.02.28

초록

Tubulin is synthesized in the cell body and must be delivered to the axon to support axonal growth. However, the exact form in which these proteins, in particular tubulin, move within the axon remains contentious. According to the "polymer transport model", tubulin is transported in the form of microtubules. In an alternative hypothesis, the "short oligomer transport model", tubulin is added to existing, stationary microtubules along the axon. In this study, we measured the translocation of microtubule plus ends in soma segments, the middle of axonal shafts and the growth cone areas, by expressing GFP-EB3 in cultured Xenopus embryonic spinal neurons. We found that none of the microtubules in the three compartments were transported rapidly as would be expected from the polymer transport model. These results suggest that microtubules are stationary in most segments of the axon, thus supporting the model according to which tubulin is transported in nonpolymeric form in rapidly growing Xenopus neurons.

키워드

과제정보

연구 과제 주관 기관 : Ministry of Science and Technology

참고문헌

  1. Baas, P. W. and Brown, A. (1997) Slow axonal transport: the polymer transport model. Trends Cell Biol. 7, 380−384 https://doi.org/10.1016/S0962-8924(97)01148-3
  2. Bamburg, J. R., Bray, D., and Chapman, K. (1986) Assembly of microtubules at the tip of growing axons. Nature 321, 788− 790 https://doi.org/10.1038/321788a0
  3. Chang, S., Rodionov, V. I., Borisy, G. G., and Popov, S. V. (1998) Transport and turnover of microtubules in frog neurons depend on the pattern of axonal growth. J. Neurosci. 18, 821−829
  4. Chang, S., Svitkina, T. M., Borisy, G. G., and Popov, S. V. (1999) Speckle microscopic evaluation of microtubule transport in growing nerve processes. Nat. Cell Biol. 1, 399−403 https://doi.org/10.1038/15629
  5. DeGeorge, J. J., Slepecky, N., and Carbonetto, S. (1985) Concanavalin A stimulates neuron-substratum adhesion and nerve fiber outgrowth in culture. Dev. Biol. 111, 335−351 https://doi.org/10.1016/0012-1606(85)90488-9
  6. de-Miguel, F. E. and Vargas, J. (1997) Different determinants on growth and synapse formation in cultured neurons. Neuroreport 8, 761−765 https://doi.org/10.1097/00001756-199702100-00036
  7. Galbraith, J. and Gallant, P. (2000) Axonal transport of tubulin and actin. J. Neurocytol. 29, 889−911 https://doi.org/10.1023/A:1010903710160
  8. Grafstein, B. and Forman, D. S. (1980) Intracellular transport in neurons. Physiol. Rev. 60, 1167−1283
  9. Hasaka, T. P., Myers, K. A., and Baas, P. W. (2004) Role of actin filaments in the axonal transport of microtubules. J. Neurosci. 24, 11291−11301 https://doi.org/10.1523/JNEUROSCI.3443-04.2004
  10. Hirokawa, N. (1997) The mechanisms of fast and slow transport in neurons: identification and characterization of the new kinesin superfamily motors. Curr. Opin. Neurobiol. 7, 605− 614 https://doi.org/10.1016/S0959-4388(97)80079-7
  11. Hoffman, P. N. and Lasek, R. J. (1975) The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons. J. Cell Biol. 66, 351−366 https://doi.org/10.1083/jcb.66.2.351
  12. Kim, J. H., Hong, Y. H., Lee, J. H., Kim, D. H., Nam, G., et al. (2005) A role for the carbohydrate portion of ginsenoside $Rg_{3}$ in $Na^{+}$ channel inhibition. Mol. Cells 19, 137−142
  13. Lasek, R. J., Garner, J. A., and Brady, S. T. (1984) Axonal transport of the cytoplasmic matrix. J. Cell Biol. 99, 212s− 221s https://doi.org/10.1083/jcb.99.1.212s
  14. Ma, Y., Shakiryanova, D., Vardya, I., and Popov, S. V. (2004) Quantitative analysis of microtubule transport in growing nerve processes. Curr. Biol. 14, 725−730 https://doi.org/10.1016/j.cub.2004.03.061
  15. Peloquin, J., Komarova, Y., and Borisy, G. (2005) Conjugation of fluorophores to tubulin. Nat. Methods 2, 299−303 https://doi.org/10.1038/nmeth0405-299
  16. Piper, M. and Holt, C. (2004) RNA translation in axons. Annu. Rev. Cell Dev. Biol. 20, 505−523 https://doi.org/10.1146/annurev.cellbio.20.010403.111746
  17. Schatzthauer, R. and Fromherz, P. (1998) Neuron-silicon junction with voltage-gated ionic currents. Eur. J. Neurosci. 10, 1956−1962 https://doi.org/10.1046/j.1460-9568.1998.00205.x
  18. Stepanova, T., Slemmer, J., Hoogenraad, C. C., Lansbergen, G., Dortland, B., et al. (2003) Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (endbinding protein 3-green fluorescent protein). J. Neurosci. 23, 2655−2664
  19. Stewart, R., Allan, D. W., and McCaig, C. D. (1996) Lectins implicate specific carbohydrate domains in electric field stimulated nerve growth and guidance. J. Neurobiol. 30, 425−437 https://doi.org/10.1002/(SICI)1097-4695(199607)30:3<425::AID-NEU10>3.0.CO;2-G
  20. Terada, S. (2003) Where does slow axonal transport go? Neurosci. Res. 47, 367−372 https://doi.org/10.1016/j.neures.2003.08.005
  21. Terada, S. and Hirokawa, N. (2000) Moving on to the cargo problem of microtubule-dependent motors in neurons. Curr. Opin. Neurobiol. 10, 566−573 https://doi.org/10.1016/S0959-4388(00)00129-X
  22. Tytell, M., Black, M. M., Garner, J. A., and Lasek, R. J. (1981) Axonal transport: each major rate component reflects the movement of distinct macromolecular complexes. Science 214, 179−181 https://doi.org/10.1126/science.6169148
  23. Wang, L. and Brown, A. (2001) Rapid intermittent movement of axonal neurofilaments observed by fluorescence photobleaching. Mol. Biol. Cell. 12, 3257−3267
  24. Wang, L. and Brown, A. (2002) Rapid movement of microtubules in axons. Curr. Biol. 12, 1496−1501 https://doi.org/10.1016/S0960-9822(02)01078-3
  25. Wang, L., Ho, C. L., Sun, D., Liem, R. K., and Brown, A. (2000) Rapid movement of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2, 137−141 https://doi.org/10.1038/35004008
  26. Yan, Y. and Brown, A. (2005) Neurofilament polymer transport in axons. J. Neurosci. 25, 7014−7021 https://doi.org/10.1523/JNEUROSCI.2001-05.2005
  27. Zakharenko, S. and Popov, S. (1998) Dynamics of axonal microtubules regulate the topology of new membrane insertion into the growing neurites. J. Cell Biol. 143, 1077−1086 https://doi.org/10.1083/jcb.143.4.1077