Satellite Cells Isolated from Adult Hanwoo Muscle Can Proliferate and Differentiate into Myoblasts and Adipose-like Cells

  • Kook, Sung-Ho (Institute of Oral Biosciences, Chonbuk National University) ;
  • Choi, Ki-Choon (Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, Korea University) ;
  • Son, Young-Ok (Institute of Oral Biosciences, Chonbuk National University) ;
  • Lee, Kyung-Yeol (Institute of Oral Biosciences, Chonbuk National University) ;
  • Hwang, In-Ho (Department of Animal Resources and Biotechnology, Chonbuk National University) ;
  • Lee, Hyun-Jeong (National Livestock Research Institute, Rural Development Administration) ;
  • Chang, Jong-Soo (Department of Agricultural Science, Korea National Open University,) ;
  • Choi, In-Ho (School of Biotechnology, Yeungnam University) ;
  • Lee, Jeong-Chae (Institute of Oral Biosciences, Chonbuk National University)
  • Published : 2006.10.31

Abstract

This study examined whether adult bovine muscle satellite cells from 30-month-old Hanwoo cattle are multipotential. The satellite cells were found to have the potential to proliferate and differentiate into myoblasts with the formation of multinucleated cells. In addition, treatment with the peroxisome proliferator activating receptor-${\gamma}$ ($PPAR{\gamma}$) agonist, rosiglitazone, promoted their trans-differentiation into adipocytes with significant increases in glycerol accumulation and glycerol-3-phosphate dehydrogenase activity. Western blot analysis revealed that increased levels of the adipocyte fatty acid-binding protein, $PPAR{\gamma}$ and of CCAAT/enhancerbinding protein were closely related to rosiglitazoneinduced differentiation of the cells. These findings demonstrate that satellite cells from adult Hanwoo cattle are multipotent, and that their trans-differentiation into adipocytes can be induced by rosiglitazone.

Keywords

Acknowledgement

Supported by : RDA

References

  1. Asakura, A., Komaki, M., and Rudnicki, M. A. (2001) Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68, 245−253
  2. Beauchamp, J. R., Heslop, L., Yu, D. S. W., Tajbakhsh, S., Kelly, R. G., et al. (2000) Expression of CD34 and Myf5 defines the majority of quiescent adult skeletal muscle statellite cells. J. Cell Biol. 151, 1221−1234
  3. Beauchamp, J. R., Morgan, J. E., Pagel, C. N., and Partridge, T. A. (1999) Dynamics of myoblast transplantation reveal a discrete minority of precursors with stem cell-like properties as the myogenic source. J. Cell Biol. 144, 1113−1122 https://doi.org/10.1083/jcb.144.6.1113
  4. Burton, N. M., Vierck, J., Krabbenhoft, L., Bryne, K., and Dodson, M. V. (2000) Methods for animal satellite cell culture under a variety of conditions. Methods Cell Sci. 22, 51−61
  5. Cassar-Malek, I., Langlois, N., Picard, B., and Geay, Y. (1999) Regulation of bovine satellite cell proliferation and differentiation by insulin and triiodothyronine. Domest. Anim. Endocrinol. 17, 373−388 https://doi.org/10.1016/S0739-7240(99)00055-7
  6. Chen, J. C. and Goldhamer, D. J. (2003) Skeletal muscle stem cells. Reprod. Biol. Endocrinol. 1, 101 https://doi.org/10.1186/1477-7827-1-101
  7. Dodson, M. V., McFarland, D. C., Grant, A. L., Doumit, M. E., and Velleman, S. G. (1996) Extrinsic regulation of domestic animal-derived satellite cells. Domest. Anim. Endocrinol. 13, 107−126 https://doi.org/10.1016/0739-7240(95)00062-3
  8. Figueroa, A., Cuadrado, A., Fan, J., Atasoy, U., Muscat, G. E., et al., (2003) Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol. Cell. Biol. 23, 4991−5004 https://doi.org/10.1128/MCB.23.14.4991-5004.2003
  9. Fux, C., Mitta, B., Kramer, B. P., and Fussenegger, M. (2004) Dual-regulated expression of C/EBP-alpha and BMP-2 enables differential differentiation of C2C12 cells into adipocytes and osteoblasts. Nucleic Acids Res. 32, el https://doi.org/10.1093/nar/gnh001
  10. Hollenberg, A. N., Susulic, V. S., Madura, J. P., Zhang, B., Moller, D. E., et al. (1997) Functional antagonism between CCAAT/Enhancer binding protein-alpha and peroxisome proliferator-activated receptor-gamma on the leptin promoter. J. Biol. Chem. 272, 5283−5290 https://doi.org/10.1074/jbc.272.8.5283
  11. Hu, E., Tontonoz, P., and Spiegelman, B. M. (1995) Transdifferentiation of myoblasts by the adipogenic transcription factors PPAR gamma and C/EBP alpha. Proc. Natl. Acad. Sci. USA 92, 9856−9860
  12. Jin, X., Lee, J. S., Kwak, S., Jung, J. E., Kim, T. K., et al., (2006) Myogenic differentiation of p53- and Rb-deficient immortalized and transformed bovine fibroblasts in response to MyoD. Mol. Cells 21, 206−212
  13. Johnson, B. J., Anderson, P. T., Meiske, J. C., and Dayton, W. R. (1996) Effect of a combined trenbolone acetate and estradiol implant on feedlot performance, carcass characteristics and carcass composition of feedlot steers. J. Anim. Sci. 74, 363− 371
  14. Lee, M. H., Kwon, T. G., Park, H. S., Wozney, J. M., and Ryoo, H. M. (2003) BMP-2-induced Osterix expression is mediated by Dl$\times$5 but is independent of Run$\times$2. Biochem. Biophys. Res. Commun. 309, 689−694. https://doi.org/10.1016/j.bbrc.2003.08.058
  15. Muroya, S., Nakajima, I., Oe, M., and Chikuni, K. (2005) Effect of phase limited inhibition of MyoD expression on the terminal differentiation of bovine myoblasts: no alteration of Myf5 or myogenin expression. Dev. Growth Differ. 47, 483−492 https://doi.org/10.1111/j.1440-169X.2005.00822.x
  16. Negrel, R., Grimadi, P., and Ailhaud, G. (1978) Establishment of preadipocyte clonal line from epididymal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones. Proc. Natl. Acad. Sci. USA 75, 6054−6058
  17. Seale, P. and Rudnicki, M. A. (2000) A new look at the origin, function, and 'stem-cell' status of muscle satellite cells. Dev. Biol. 218, 115−124 https://doi.org/10.1006/dbio.1999.9565
  18. Taylor-Jones, J. M., McGehee, R. E., Rando, T. A., Lecka- Czernik, B., Lipschitz, D. A., et al. (2002) Activation of an adipogenic program in adult myoblasts with age. Mech. Ageing Dev. 123, 649−661 https://doi.org/10.1016/S0047-6374(01)00411-0
  19. Teboul, L., Gaillard, D., Staccini, L., Inadera, H., Amri, E. Z., et al. (1995) Thiazolidinediones and fatty acids convert myogenic cells into adipose-like ells. J. Biol. Chem. 270, 28183−28187 https://doi.org/10.1074/jbc.270.47.28183
  20. Tontonoz, P., Hu, E., and Spiegelman, B. M. (1995) Regulation of adipocyte gene expression and differentiation by peroxisome proliferator activated receptor gamma. Curr. Opin. Genet. Dev. 5, 571−576
  21. Van der Giessen, K., Di-Marco, S., Clair, E., and Gallouzi, E. (2003) RNAi-mediated HuR depletion leads to the inhibition of muscle cell differentiation. J. Biol. Chem. 278, 47119− 47128 https://doi.org/10.1074/jbc.M308889200
  22. Wada, M. R., Inagawa-Ogashiwa, M., Shimizu, S., Yasumoto, S., and Hashimoto, N. (2002) Generation of different fates from multipotent muscle stem cells. Development 129, 2987−2995
  23. Yeow, K., Phillips, B., Dani, C., Cabane, C., Amri, E. Z., et al. (2001) Inhibition of myogenesis enables adipogenic transdifferentiation in the C2C12 myogenic cell line. FEBS Lett. 506, 157−162