Elastic Seismic Design of Steel Highrise Buildings in Regions of Moderate Seismicity

중진대 철골조 초고층 건물의 탄성내진설계

  • Received : 2006.05.04
  • Accepted : 2006.09.12
  • Published : 2006.10.27

Abstract

Lateral loading due to wind or earthquake is a major factor that affects the design of high-rise buildings. This paper highlights the problems associated with the seismic design of high-rise buildings in regions of strong wind and moderate seismicity. Seismic response analysis and performance evaluation were conducted for wind-designed concentrically braced steel high-rise buildings in order to check the feasibility of designing them per elastic seismic design criterion (or strength and stiffness solution) in such regions. Review of wind design and pushover analysis results indicated that wind-designed high-rise buildings possess significantly increased elastic seismic capacity due to the overstrength resulting from the wind serviceability criterion. The strength demand-to-capacity study showed that, due to the wind design overstrength, high-rise buildings with a slenderness ratio of larger than four or five can elastically withstand even the maximum considered earthquake (MCE) with the seismic performance level of immediate occupancy under the limited conditions of this study. A step-by-step seismic design procedure per the elastic criterion that is directly usable for practicing design engineers is also recommended.

바람과 지진에 의한 횡력은 고층건물의 설계에 영향을 미치는 주요하중이다. 본 연구에서는 중/약진대로 분류되지만 강한 태풍이 내습하는 국내의 횡하중 환경하에서 철골조 초고층건물의 내진설계의 핵심문제를 취급하고자 하였다. 즉 연성이 아니라 강성과 강도에 의한 탄성 내진설계의 가능성을 타진하기 위해, 내풍설계된 철골조 초고층 중심가새골조의 푸쉬오버해석, 동적 지진응답해석 및 내진성능평가를 수행하였다. 내풍설계에서 요구되는 사용성 요건을 만족시키면 상당한 크기의 시스템 초과강도가 유입됨을 내풍설계의 분석 및 푸시오버해석을 통하여 확인할 수 있었다. 결과적으로 양질로 내풍설계된 세장비 5이상의 철골조 초고층 중심가새골조는 2400년 재래기의 최대고려지진에 대해서도 즉시입주 가능한 거동수준에서 탄성적으로 저항할 수 있음이 확인되었다. 본 연구의 결과를 종합하여 실무설계에서 활용될 수 있는 풍진대에서의 철골조 초고층건물의 탄성내진설계절차 및 관련 권장사항을 제안하였다.

Keywords

References

  1. 대한건축학회 (2000) 건축물 하중기준 및 해설, 태림문화사
  2. 대한건축학회 (2005) 건축구조설계기준, 대한건축학회
  3. 대한건축학회 (2002) 한계상태설계기준에 의한 강구조설계 예 제집, 대한건축학회
  4. 이철호, 김선웅 (2005) 중진대의 지진환경하에서 내풍설계된 초고층 철골조 중심가새골조의 지진응답해석 및 내진성능 평가, 한국지진공학회 논문집, 9(1), pp.33-42
  5. AISC (2001) Manual of Steel Construction: Load and Resistance Factor Design, American Institute of Steel Construction Inc., Third Edition
  6. ATC (1978) Tentative Provisions for the Development of Seismic Regulations for Buildings, Applied Technology Council 3-06 Report, Redwood City, CA
  7. Chopra, A. K. (2001) Dynamics of Structures, Prentice Hall, Second Edition
  8. CSI (2000) SAP2000 Analysis Reference, Computers and Structures Inc.
  9. CTBUH (1994) Structural Systems for Tall Buildings, McGraw-Hill
  10. Englekirk, R. E. (1996) Highrise Design Considerations in Regions of Moderate Seismicity, Korea University, Special Lecture
  11. FEMA (1997) NEHRP commentary on the guidelines for the seismic rehabilitation of buildings. FEMA 273, Federal Emergency Management Agency, Washington, D.C.
  12. Gergely, P. (1995) R/C Buildings in Moderate Seismic Zone: Progress and Problems in Evaluation and Design, Proc. of Tom Paulay Symposium, UCSD, USA
  13. Jain, A. K., and Goel, S. C. (1978) Inelastic Cyclic Behavior of Bracing Members and Seismic Response of Braced Frames of Different Proportions, Report No. UMEE78R3, Department of Civil Engineering, University of Michigan, Ann Arbor, Michigan
  14. NBCC (1995) NBC 1995 Structural Commentaries (Part 4)
  15. Tremblay, R. (2002) Achieving a Stable Inelastic Seismic Response for Multi-Story Concentrically Braced Steel Frames, Engineering Journal, 40(2), pp. 111-130
  16. Prakash, V., Powell, G. H., and Campbell, S. (1993) DRAIN-2DX Base Program Description and User Guide. Report No. UCB/SEMM-1933/17, Structural Engineering Mechanics and Materials, Department of Civil Engineering University of California Berkeley, California
  17. http://peer.berkeley.edu/smcat