Non-thermal Plasma for Air Pollution Control Technology

저온 플라즈마 이용 대기환경설비기술

  • Song, Young-Hoon (Department of Environment & Energy Machinery, Korea Institute of Machinery & Materials)
  • 송영훈 (한국기계연구원, 환경.에너지기계 연구부)
  • Received : 2005.11.07
  • Published : 2006.02.10

Abstract

Non-thermal plasma technology for air pollution control, which are NOx, SOx, VOCs, soot, etc., is reviewed. In the early parts of the paper, generation of non-thermal plasma and plasma chemical process are introduced to provide an appropriate plasma condition (electron energy density) for treating air pollutions. Recent results on numerical simulation, optical diagnostics, and gas treatment are provided to characterize an optimal design of plasma generation and plasma chemical process. These data are also helpful to understand unique features of non-thermal plasma process that is achieved with relatively low temperature conditions, i.e. low enthalpy conditions of the treated gas molecules. In the later parts of the paper, several examples of recently developed non-thermal plasma techniques are illustrated, in which technical and economical assessments of the present techniques are provided.

본 논문에서는 대기압 저온 플라즈마를 이용하여 저농도의 유해물질로서 배출되는 NOx, SOx, 휘발성 유기화학물(VOCs), 악취, 매연입자를 처리하는 대기환경설비기술에 대해 살펴보았다. 대기압 저온 플라즈마는 대부분 코로나 및 유전체방전을 통해 발생되며, 저온 플라즈마는 배출가스의 99% 이상을 차지하는 산소, 질소, 이산화탄소 및 수증기의 엔탈피를 증가시키지 않고서도 즉, 낮은 공정온도 조건에서 유해가스를 선택적으로 처리하는 장점이 있다. 본 논문에서는 저온 플라즈마 발생 및 이로 인해 유도된 화학반응의 특성을 수치해석 및 실험결과를 통해 살펴봄으로서 유해물질을 처리하는데 적합한 플라즈마의 조건(전자 에너지 밀도)을 제시하였고, 이를 구체적으로 달성하기 위한 반응기 형상 및 전력조건을 제시하였다. 본 논문의 후반부에서는 해당기술의 개발사례 및 현재 이들 기술이 갖는 기술 및 경제적인 한계점을 제시함으로서 향후 관련기술의 완성도를 높이는데 도움이 되고자 하였다.

Keywords

References

  1. www.enviro-serv.co.uk
  2. A. G. Hill and R. G. Rice, Handbook of Ozone Technology and Applications, ed. R. G. Rice and A. Netzer, Butterworth, 1, 1, Borough Green (1982)
  3. H. H. Kim, Plasma Process. Polym., 1, 91, (2004) https://doi.org/10.1002/ppap.200400028
  4. G. Dinelli, L. Civitano, and M. Rea, IEEE Trans. Industry Applications, 26, 535, (1990) https://doi.org/10.1109/28.55956
  5. B. M. Penetrante and S. E. Schultheis, Non-Thermal Plasma Techniques for Pollution Control-Part A & B: Ed. Springer-Verlag: Berlin, Germany (1993)
  6. Y. H. Song, W. H. Shin, S. J. Kim, M. S. Park, and G. H. lang, J. Adv. Oxid. Technol., 4, 265 (1999)
  7. V-S. Mok, I-S. Nam, R-W. Chang, S-W. Ham, S-H. Kim, and Y-M. Jo, Proc. 7th International Conference on Electrostatic Precipitation, Kyongju, Korea (1998)
  8. K. G. Rappe, J. W. Hoard, C. L. Aardahl, P. W. Park, C. H. F. Peden, and D. N. Tran, Catalysis Today, 89, 143 (2004) https://doi.org/10.1016/j.cattod.2003.11.020
  9. Th. Hammer, Th. Kappes, and M. Baldauf, Catalysis Today, 89, 5 (2004) https://doi.org/10.1016/j.cattod.2003.11.001
  10. B. M. Penetrante, SAE982508
  11. Y. H. Song, M. S. Cha, Y. Kim, K. T. Kim, S. J. Kim, S. O. Han, and K. I. Choi, J. Adv. Oxid. Technol., 6, 11 (2003)
  12. 한소영, 송영훈, 차민석, 김석준, 최경일, 신동준, 한국대기보전학회지, 18, 51 (2002)
  13. Y. H. Song, S. K. Kim, K. I. Choi, and T. Yamamoto, J. Electrostatics, 55, 189, (2002) https://doi.org/10.1016/S0304-3886(01)00197-8
  14. K. Urashima and J. S, Chang, IEEE trans. dielectrics and electrical insulation, 7, 602 (2000) https://doi.org/10.1109/94.879356
  15. S. Futamura, A. Zhang, H. Einaga, and H. Kabashima, Catalysis Today, 72, 259 (2002) https://doi.org/10.1016/S0920-5861(01)00503-X
  16. Y. C. Hong, H. S. Kim, and H. S. Uhm, Thin Solid Films, 435 329 (2003) https://doi.org/10.1016/S0040-6090(03)00363-8
  17. B. A. Wofford, M. W. Jackson, C. Hartz, and J. W. Bevan, Environ. Sci. Technol., 33, 1892 (1999) https://doi.org/10.1021/es9805472
  18. H. Mazing, Advances in Chemical Physics Volume LXXX, John Wiley & Sons, Inc. (1991)
  19. O. Tokunaga and N. Suzuki, Radiat. Phys. Chem., 4, 145 (1984)
  20. Atkinson, R., Chem. Rev., 85, 69 (1985)
  21. B. Eliasson and U. Kogelschatz, IEEE Trans. on Plasma Science, 19, 309 (1991) https://doi.org/10.1109/27.106829
  22. B. Eliasson and U. Kogelschatz, IEEE Trans. on Plasma Science, 19, 1063 (1991) https://doi.org/10.1109/27.125031
  23. U. Kogelschatz, Advanced Ozone generation in Process Technologies for water Treatment, Ed. S. Stuki, 87, New York and London, Prenum (1988)
  24. B. M. Pcnetrantc, J. N. Bardsley, and M. C. Hsiao, Jpn. J. Appl. Phys., 36, 5007 (1997) https://doi.org/10.1143/JJAP.36.5007
  25. B. M. Penetrante, proc. Non-Thermal Plasma Techniques for Pollution Control-Part A: Overview, Fundamentals and Supporting Technologies, Ed. B.M. Penetrante and S.E. Schultheis, Springer-Verlag: Berlin, Germany (1993)
  26. Y. H. Kim, W. S. Kang, J. M. Park, S. H. Hong, Y. H. Song, and S. J. Kim, IEEE Trans. Plasma Sci., 32, 18 (2004) https://doi.org/10.1109/TPS.2004.823960
  27. Y. H. Kim, S. H. Hong, M. S. Cha, Y.-H. Song, and S. J. Kim, J. Adv. Oxid. Technol., 6, 17 (2003)
  28. J. M. Park, Y. H. Kim, and S. H. Hong, proc. HAKONE VIII, 104, Puhajarve, Estonia (2002)
  29. W. S. Kang, Y. H. Kim, S. H. Hong, and Y. H. Song, proc. HAKONE VIII, 109, Puhajarve, Estonia (2002)
  30. Y. H. Song, M. S. Cha, J. O. Lee, K. T. Kim, and Y. H. Kim, proc. 4th Int'l Symposium on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development; 237, Panama City Florida USA (2004)
  31. T. G. Beuthe and J. S. Chang, Handbook of Electrostatic Process, ed. j-S. Chang, A. J. Kelly, and J. M. Crowley, Marcel Dekker, Inc. New York (1995)
  32. 홍상희, 물리학과 첨단기술, 7, 9, 27 (1998)
  33. A. Grill, IEEE Press, New York (1994)
  34. Y. P. Raizer, Springer-Verlag, Berlin Heidelberg New York (1997)
  35. S. Y. Moon, W. Choe, H. S. Uhm, Y. S. Hwang, and J. J. Choi, Phys. Plasmas, 9, 4045 (2003) https://doi.org/10.1063/1.1495872
  36. F. Massines, A. Rabehi, P. Decomps, R. B. Gardi, P. Segur, and C. Mayoux, J. Appl. Phys., 83, 2950 (1998) https://doi.org/10.1063/1.367051
  37. S. Okazaki, M. Kogorna, M. Uehara, and Y. Yoshihisa, J. Physics. D: Appl. Phys., 26, 889 (1993) https://doi.org/10.1088/0022-3727/26/5/025
  38. Y. H. Kim, M. S. Cha, W. H. Shin, and Y. H. Song, J. Korean Physical Society, 43, 732 (2003) https://doi.org/10.3938/jkps.43.732
  39. M. S. Cha, W. Lee, Y. H. Song, J. O. Lee, W. H. Shin, S. J. Kim, Proc. 3rd International Symposium on Non-Thermel Plasma Technology for Pollution Control, Cheju, Korea (2001)
  40. K. Yang, S. Kanazawa, T. Ohkubo, and Y. Nomoto, proc. ICESP VII, 257, Kyongju, Korea (1998)
  41. L. A. Rosocha and R. A. Korzekwa, J. Adv. Oxid. Technol., 4, 247 (1998)
  42. Y. Kim, K. T. Kim, M. S. Cha, Y. H. Song, and S. J. Kim, IEEE Trans. on Plasma Science, 33, 1041 (2005) https://doi.org/10.1109/TPS.2005.848616
  43. H. Kohno, A. A. Bcrezcn, J. S. Chang, M. Tamura, T. Yamamoto, A. Shibuya, and S. Honda, IEEE Trans. on Plasma Science, 34, 953 (1998)
  44. Yong C. Hong, Jeong H. Kim, and Han S. Uhm, Proc. 6th Asia Pacific Conference on Plasma Science and Technology (2002)
  45. S. Raoux et al., J. Vac. Sci. Technol. B. 17, 477 (1999) https://doi.org/10.1116/1.590580
  46. V. Y. Sirnachev, S. S. Novoselov, V. A. Svetlichnyi, A. F. Gavrilov, M. V. Gorokhov, V. I. Semenov, V. A. Ryzhikov, and V. V. Demchuk, Thermal Engineering, 35, 171 (1988)
  47. Y. Yoshioka, R. Takenaga, and J. Shimasaki, proc. 16th Int'l Symposium on Plasma Chemistry, Taormina, Italy (2003)
  48. E. A. Filimonova, Y. H. Kim, S. H. Hong, and Y. H. Song, J. Phys. D: Appl. Phys., 35, 2795 (2002) https://doi.org/10.1088/0022-3727/35/21/316
  49. D. Evans, J. J. Coogan, G. K. Anderson, L. A. Rosocha, and M. J. Kushner, J. Appl. Phys., 74, 5378 (1993) https://doi.org/10.1063/1.354241
  50. H.-H. Kim, A. Ogata, and S. Futamura, J. Physics D: Appl. Phys., 38, 1292 (2005) https://doi.org/10.1088/0022-3727/38/8/029
  51. H.-H. Kim, S-M. Oh, A. Ogata, and S. Futamura, Applied Catalysis B: Environmental 56, 213 (2005) https://doi.org/10.1016/j.apcatb.2004.09.008
  52. US Patent 6464945 B1 (2002)
  53. US Patent 5746984 (1998)
  54. T. Hammer. SAE 2000-01-2894
  55. Proc. 4th International Symposium on Non-thermal Plasma Technology for Pollution Control and Sustainable Energy Development; Panama City, Florida USA (2004)
  56. M. S. Cha, S. M. Lee, K. T. Kim, and S. H. Chung, Combustion and Flame 141, 438 (2005) https://doi.org/10.1016/j.combustflame.2005.02.002
  57. 송영훈, 차민석, 김관태, 이대훈, 제30회 한국연소학회 학술대회 논문집, 277 (2005)