Upregulation of Isoprenoid Pathway Genes During Enhanced Saikosaponin Biosynthesis in the Hairy Roots of Bupleurum falcatum

  • Kim, Young Soon (Kumho Life and Environmental Science Laboratory, Chonnam National University) ;
  • Cho, Jung Hyun (Kumho Life and Environmental Science Laboratory, Chonnam National University) ;
  • Ahn, Juncheul (Department of Life Science, Seonam University) ;
  • Hwang, Baik (Department of Biology and Institute of Plant Resources, Chonnam National University)
  • Received : 2006.05.30
  • Accepted : 2006.10.23
  • Published : 2006.12.31

Abstract

In order to characterize saikosaponin biosynthesis in Bupleurum falcatum, the expression of five isoprenoid pathway genes and their relationship to saikosaponin accumulation in the hairy roots were analyzed. The hairy roots exhibited a rapid accumulation of saikosaponins when incubated in a root culture medium (3XRCM). Homology-based RT-PCR was used to isolate core fragments of five genes, HMGR, IPPI, FPS, SS, and OSC, from the hairy roots. The deduced amino acid sequences exhibited amino acid identities of more than 85% to previously reported genes. Using the fragments as probes, the expression of these five genes in the hairy roots during incubation in 3XRCM medium was examined. Expression of all five genes in the hairy roots increased soon after incubation. In particular, the SS and OSC genes were coordinately induced at 8 days of incubation, and their expression persisted throughout the incubation period. A quantitative HPLC analysis showed that the saikosaponin content of the hairy root culture also began to increase at 8 days of culture. The correlation between SS transcript level and saikosaponin content in the hairy roots suggests that transcriptional regulation plays a regulatory role in saikosaponin biosynthesis.

Keywords

Acknowledgement

Supported by : Ministry of Science and Technology (MOST)

References

  1. Abe, I., Rohmer, M., and Prestwich, G. D. (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem. Rev. 93, 2189−2206
  2. Ahn, J. C., Paek, Y. W., Sung, C. K., Kang, G. H., and Hwang, B. (1993) Production of saponin by hairy root culture of Bupleurum falcatum L. Kor. J. Bot. 36, 43−49
  3. Ahn, J. C., Kim, E. S., Lee, H. J., and Hwang, B. (1999) Effects of IAA, IBA, and media on growth and saikosaponin biosynthesis in Bupleurum falcatum hairy root culture. Kor. J. Plant Tisssue Culture 26, 171−175
  4. Aoyagi, H., Kobayashi, Y., Yamada, K., and Yokoyama, M. (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl. Microbiol. Biotechnol. 57, 482−488
  5. Bach, T. J. and Lichtenthaler, H. K. (1982) Mevinolin: a highly specific inhibitor of microsomal 3-hydroxy-3-methylglutaryl- CoA reductase of radish plants. Z. Naturforsch. 37, 46−50
  6. Chappell, J. (1995) The biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol. 107, 1−6
  7. Flores-Sanchez, I. J., Ortega-Lopez, J., Montes-Horcasitas, M. C., and Ramos-Valdivia, A. C. (2002) Biosynthesis of sterols and triterpenes in cell suspension cultures of Uncaria tomentosa. Plant Cell Physiol. 43, 1502−1509 https://doi.org/10.1093/pcp/pcf181
  8. Fulton, D. C., Kroon, P. A., and Threlfall, D. R. (1994) Enzymological aspects of the redirection of terpenoid biosynthesis in elicitor-treated cultures of Tabernaemontana divaricata. Phytochemistry 35, 1183−1186 https://doi.org/10.1016/S0031-9422(00)94818-0
  9. Haralampidis, K., Trojanowska, M., and Osbourn, A. E. (2002) Biosynthesis of triterpenoid saponins in plants. Adv. Biochem. Eng. Biotechnol. 75, 31−49
  10. Hayashi, H., Huang, P., Kirakosyan, A., Inoue, K., Hiraoka, N., et al. (2001) Cloning and characterization of a cDNA encoding $\beta$-amyrin synthase involved in glycyrrhizin and soyasaponin biosynthesis in licorice. Biol. Pharm. Bull. 24, 912−916 https://doi.org/10.1248/bpb.24.912
  11. Hayashi, H., Huang, P., and Inoue, K. (2003) Up-regulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol. 44, 404−411 https://doi.org/10.1093/pcp/pcg054
  12. Henry, M., Rahier, A., and Taton, M. (1992) Effect of gypsogenin 3, O-glucuronide pretreatment of Gypsophila paniculata and Saponaria officinalis cell suspension cultures on the activities of microsomal 2,3-oxidosqualene cycloartenol and amyrin cyclases. Phytochemistry 31, 3855−3859 https://doi.org/10.1016/S0031-9422(00)97541-1
  13. Iturbe-Ormaetxe, I., Haralampidis, K., Papadopoulou, K., and Osbourn, A. E. (2003) Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51, 731−743 https://doi.org/10.1023/A:1022519709298
  14. Jeong, G. T. and Park, D. H. (2006) Characteristics of transformed Panax ginseng C. A. Meyer hairy roots: growth and nutrient profile. Biotechnol. Bioprocess Eng. 11, 43−47 https://doi.org/10.1007/BF02931867
  15. Katakura, M., Kimura, T., Yashiwara, and Endo, I. (1991) Production of saikosaponin by tissue culture of Bupleurum falcatum L. Bioprocess Engineering 7, 97−100
  16. Kim, O. T., Kim, M. Y., Huh, S. M., Bai, D. G., Ahn, J. C., et al. (2005) Cloning of a cDNA probably encoding oxidosqualene cyclase associated with asiaticoside biosynthesis from Centella asiatica (L.) Urban. Plant Cell Rep. 24, 304−311 https://doi.org/10.1007/s00299-005-0927-y
  17. Kita, H., Hata, T., Ito, E., and Yoneda, R. (1980) Analgesic and other pharmacological actions of saikosaponin in repeated cold stress (SART stressed) animals. J. Pharmacobio-Dyn. 3, 269−280 https://doi.org/10.1248/bpb1978.3.269
  18. Kusakari, K., Yokoyama, M., and Inomata, S. (2000) Enhanced production of saikosaponins by root culture of Bupleurum falcatum L. using two-step control of sugar concentration. Plant Cell Rep. 19, 1115−1120 https://doi.org/10.1007/s002990000240
  19. Kushiro, T., Shibuya, M., and Ebizuka, Y. (1998) $\beta$-amyrin synthase: cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256, 238−244 https://doi.org/10.1046/j.1432-1327.1998.2560238.x
  20. Lee, M. H., Jeong, J. H., Seo, J. W., Shin, C. G., Kim, Y. S., et al. (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol. 45, 976−984 https://doi.org/10.1093/pcp/pch126
  21. McGarvey, D. J. and Croteau, R. (1995) Terpenoid metabolism. Plant Cell. 7, 1015−1026
  22. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15, 473−497
  23. Osbourn, A. E. (2003) Saponins in cereals. Phytochemistry 62, 1−4 https://doi.org/10.1016/S0031-9422(02)00393-X
  24. Park, Y. G., Kim, S. J., Kang, Y. M., Jung, H. Y., Prasad, D. T., et al. (2004) Production of ginkgolides and bilobalide from optimized the Ginkgo biloba cell culture. Biotechnol. Bioprocess Eng. 9, 41−46 https://doi.org/10.1007/BF02949320
  25. Tani, T., Katsuki, T., Kubo, M., and Arichi, S. (1986) Histochemistry: IX. Distribution of saikosaponins in Bupleurum falcatum root. J. Chromatography 360, 407−416
  26. Ushino, Y. and Abe, H. (1991) Effects of saikosaponin-d on the functions and morphogy of macrophages. Int. J. Immunopharmacol. 13, 493−499 https://doi.org/10.1016/0192-0561(91)90068-I
  27. Ushino, Y. and Abe, H. (1992) Inactivation of measles virus and herpes simplex virus by saikosaponin d. Plana Med. 58, 171−173
  28. Yamamoto, M., Kumagai, A., and Yamamura, Y. (1975) Structure and actions of saikosaponins isolated from Bupleurum falcatum L. Arzneim. Forsch. 25, 1021−1023
  29. Yamada, J. K., Hujita, K., and Sakai, K. (2003) Cell growth and nutrient uptake by cell suspensions of Cupressus lusitanica cells. J. Wood Sci. 49, 5−10 https://doi.org/10.1007/s100860300001