참고문헌
- Barlow, R. E. and Proschan, F.(1965), Mathematical Theory of Reliability, New York: John Wiley
- Barlow, R. E. (1975), Statistical Theory of Reliability and Life Testing, New York: Holt, Rinehart and Winston
- Bartholomew, D. J.(1963), 'An Approximation Solution of the Integral Equation of Renewal Theory', Journal of Royal Statistical Society, Vol. 25B, pp. 432-441
- Baxter, L. A., Scheuer, L. M., McConalogue, D. J., and Blischke, W. R(1982), 'On the Tabulation of the Renewal Function', Technometrics, Vol. 24, pp. 151-156 https://doi.org/10.2307/1268495
- Blischke, W. R. and Scheuer, E. M.(1975), 'Calculating of the Cost of Warranty Policies as a Function of Estimated Life Distributions', Naval Research Logistics Quarterly, Vol. 22, pp. 681-696 https://doi.org/10.1002/nav.3800220405
- Blischke, W. R. (1981), 'Application of Renewal Theory in Analysis of the Free- Replacement Warranty', Naval Research Logistics Quarterly, Vol. 28, pp. 193-205 https://doi.org/10.1002/nav.3800280202
- Cleroux, Rand McConalogue, D. J.(1976), 'A Numerical Algorithm for Recursively-Defined Convolution Integrals Involving Distribution Functions', Management Science, Vol. 22, pp. 1138-1146 https://doi.org/10.1287/mnsc.22.10.1138
- Dhillon, B. S.(1979), 'A Hazard Rate Model', IEEE Trensactions on Reliability, Vol. 28, p. 150 https://doi.org/10.1109/TR.1979.5220531
- Dhillon, B. S. (1981), 'Life Distribution', IEEE Trensactions on Reliability, Vol. 30, pp. 457-460 https://doi.org/10.1109/TR.1981.5221168
- Deligonul, Z. S.(1985), 'An Approximation Solution of the Integral Equation of Renewal Theory', Journal of Applied Probability, Vol. 22, pp. 926-931 https://doi.org/10.2307/3213960
- Feller, W.(1941), 'On the Integral Equation of Renewal Theory', Annual of Mathematical Statistics, Vol. 12, pp. 243-267 https://doi.org/10.1214/aoms/1177731708
- Hjorth, U.(1980), 'A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates', Technometrics, Vol. 22, pp, 99-107 https://doi.org/10.2307/1268388
- Jaquette, D. J.(1972), 'Approximations to the Renewal Function m(t)', Operations Research, Vol. 20, pp. 722-727 https://doi.org/10.1287/opre.20.3.722
- Karlin, S,(1958), 'The Application of Renewal Theory to the Study of Inventory Policies', in Studies in the Mathematical Theory of Inventory and Production, eds. K. J. Arrow, Karlin, S., and Scarf, H., Stanford: Stanford University Press, pp, 270-297
- Lomnicki, Z. A.(1966), 'A Note on the Weibull Renewal Process', Biometrika, Vol. 53, pp. 375-381 https://doi.org/10.1093/biomet/53.3-4.375
- Ozbaykal, T.(197l), Bounds and Approximations for the Renewal Function, Unpublished M.S. Thesis, Dept. of Operations Research, Naval Post-graduate School, Monterrey, CA
- Ross, S. M.(1970), Applied Probability Models with Optimization Applications, San Francisco: Holden-Day
- Smith, W. J. and Leadbetter, M. R.(1963), 'On the Renewal Function for the Weibull Distribution', Technometrics, Vol. 5, pp, 393-396 https://doi.org/10.2307/1266342
- Weiss, G. H.(1962), 'Laguerre Expansion for Successive Generations of a Renewal Process', Journal of Research National Bur. Standards, Vol. 66B, pp. 165-168 https://doi.org/10.6028/jres.066B.017