Hjorth모형과 Dhillon모형에 대한 재생함수 추정

Approximation of the Renewal Function for Hjorth Model and Dhillon Model

  • 남경현 (경기대학교, 응용정보통계학과) ;
  • 장석주 (경기대학교, 응용정보통계학과) ;
  • 김도훈 (호남대학교, 경영학과)
  • Nam, Kyung-H. (Department of Applied Information Statistics, Kyonggi University) ;
  • Chang, Seog-Ju (Department of Applied Information Statistics, Kyonggi University) ;
  • Kim, Do-Hoon (Department of Business Administration, Honam University)
  • 발행 : 2006.03.31

초록

This paper applies approximation of the renewal function for Hjorth model and Dhillon model which show the trend change in its aging properties. We obtain the renewal function for Hjorth model and Dhillon model by a numerical solution of an approximate integral. We observe the influence of each parameter in these models. The results of the computation are described and their corresponding graphs are provided.

키워드

참고문헌

  1. Barlow, R. E. and Proschan, F.(1965), Mathematical Theory of Reliability, New York: John Wiley
  2. Barlow, R. E. (1975), Statistical Theory of Reliability and Life Testing, New York: Holt, Rinehart and Winston
  3. Bartholomew, D. J.(1963), 'An Approximation Solution of the Integral Equation of Renewal Theory', Journal of Royal Statistical Society, Vol. 25B, pp. 432-441
  4. Baxter, L. A., Scheuer, L. M., McConalogue, D. J., and Blischke, W. R(1982), 'On the Tabulation of the Renewal Function', Technometrics, Vol. 24, pp. 151-156 https://doi.org/10.2307/1268495
  5. Blischke, W. R. and Scheuer, E. M.(1975), 'Calculating of the Cost of Warranty Policies as a Function of Estimated Life Distributions', Naval Research Logistics Quarterly, Vol. 22, pp. 681-696 https://doi.org/10.1002/nav.3800220405
  6. Blischke, W. R. (1981), 'Application of Renewal Theory in Analysis of the Free- Replacement Warranty', Naval Research Logistics Quarterly, Vol. 28, pp. 193-205 https://doi.org/10.1002/nav.3800280202
  7. Cleroux, Rand McConalogue, D. J.(1976), 'A Numerical Algorithm for Recursively-Defined Convolution Integrals Involving Distribution Functions', Management Science, Vol. 22, pp. 1138-1146 https://doi.org/10.1287/mnsc.22.10.1138
  8. Dhillon, B. S.(1979), 'A Hazard Rate Model', IEEE Trensactions on Reliability, Vol. 28, p. 150 https://doi.org/10.1109/TR.1979.5220531
  9. Dhillon, B. S. (1981), 'Life Distribution', IEEE Trensactions on Reliability, Vol. 30, pp. 457-460 https://doi.org/10.1109/TR.1981.5221168
  10. Deligonul, Z. S.(1985), 'An Approximation Solution of the Integral Equation of Renewal Theory', Journal of Applied Probability, Vol. 22, pp. 926-931 https://doi.org/10.2307/3213960
  11. Feller, W.(1941), 'On the Integral Equation of Renewal Theory', Annual of Mathematical Statistics, Vol. 12, pp. 243-267 https://doi.org/10.1214/aoms/1177731708
  12. Hjorth, U.(1980), 'A Reliability Distribution with Increasing, Decreasing, Constant and Bathtub-Shaped Failure Rates', Technometrics, Vol. 22, pp, 99-107 https://doi.org/10.2307/1268388
  13. Jaquette, D. J.(1972), 'Approximations to the Renewal Function m(t)', Operations Research, Vol. 20, pp. 722-727 https://doi.org/10.1287/opre.20.3.722
  14. Karlin, S,(1958), 'The Application of Renewal Theory to the Study of Inventory Policies', in Studies in the Mathematical Theory of Inventory and Production, eds. K. J. Arrow, Karlin, S., and Scarf, H., Stanford: Stanford University Press, pp, 270-297
  15. Lomnicki, Z. A.(1966), 'A Note on the Weibull Renewal Process', Biometrika, Vol. 53, pp. 375-381 https://doi.org/10.1093/biomet/53.3-4.375
  16. Ozbaykal, T.(197l), Bounds and Approximations for the Renewal Function, Unpublished M.S. Thesis, Dept. of Operations Research, Naval Post-graduate School, Monterrey, CA
  17. Ross, S. M.(1970), Applied Probability Models with Optimization Applications, San Francisco: Holden-Day
  18. Smith, W. J. and Leadbetter, M. R.(1963), 'On the Renewal Function for the Weibull Distribution', Technometrics, Vol. 5, pp, 393-396 https://doi.org/10.2307/1266342
  19. Weiss, G. H.(1962), 'Laguerre Expansion for Successive Generations of a Renewal Process', Journal of Research National Bur. Standards, Vol. 66B, pp. 165-168 https://doi.org/10.6028/jres.066B.017