Characterization of Formation of Fructose during Acid Hydrolysis and Enzyme Treatment of Fructose Saccharides

과당 탄수화물의 산가수 및 효소적 분해 특성연구

  • Kang, Soon-Ah (Department of Fermented Food Science, Seoul University of Venture & Information) ;
  • Lee, Eun-Young (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Jung, Sung-Je (Department of Food Science and Technology, Kyung Hee University) ;
  • Kim, Sang-Moo (Faculty of Marine Bioscience and Technology, Kangnung National University) ;
  • Lee, Jae-Cheol (Department of Food and Nutrition, Kangwon National University) ;
  • Jang, Ki-Hyo (Department of Food and Nutrition, Kangwon National University)
  • 강순아 (서울벤처정보대학원대학교 발효식품과학과) ;
  • 이은영 (경희대학교 동서의학대학원) ;
  • 정성제 (경희대학교 생명공학원) ;
  • 김상무 (강릉대학교 해양생명공학부) ;
  • 이재철 (강원대학교 식품영양학과) ;
  • 장기효 (강원대학교 식품영양학과)
  • Published : 2006.04.28

Abstract

Acid- and enzymatic hydrolysis properties of two fructans(inulin and levan) and their oligofructoses has been investigated. At pH 1, the initial fructose release rate differs and is rapidly hydrolyzed in the order of levan oligosaccharide and inulin oligosaccharide, levan, inulin. At pH 4.5, 7 and 14, no or little amount of fructose are found from four samples. At the presence of inulinase in the reaction mixture, the fructose is rapidly produced from all samples, whilst invertase treatments show low activities. The results allow the estimation of the fructose release rate in many foodstuff processing conditions.

본 연구는 레반과 레반 올리고당, 이눌린과 이눌린 올리고당의 산 및 효소적 안정성을 분석하였다. 네종류의 플락탄을 1.25% 농도로 $30^{\circ}C$, 16시간 반응시킨 후 생성된 과당의 양으로 가수분해 정도를 판단하였다. 네 종류의 플락탄은 중성과 알칼리 pH 에서는 비교적 높은 안정성을 보여, pH 14인 조건에서 레반과 이눌린은 2% 이하, 이눌린 올리고당은 10%, 레반 올리고당은 14%가 가수 분해 되었다. pH 5의 조건에서는 거의 분해되지 않았으나, 산성 조건에서는(pH 1.4) 빠르게 가수분해되어, 이눌린보다 레반이 더 빠르게 가수분해 되었다. 플락탄은 inulinase에 의하여 분해되었으나, invertase에서는 분해정도가 적었다. 이눌린 올리고당은 inulinase와 invertase 모두에서 분해되는 특성을 보였다. 본 연구결과는 플락탄을 이용한 식품가공과 보관 공정에서 플락탄의 분해속도를 예측하는데 도움을 주리라 생각된다.

Keywords

References

  1. Franck, A. and De Leenheer (2002), Inulin. pp. 439-480. In: Baets, S. De., E. J. Vandamme, and A. Steinbuchel (ed.). Biopolymers. Vol 6. Wiley-VCH Verlag Gmbh, Germany
  2. Rhee, S. K., K. B. Song, C. H. Kim, B. S. Park, E. K. Jang, and K. H. Jang (2002), Levan. pp. 351-377. In: Baets, S. De., E. J. Vandamme, and A. Steinbuchel (ed.). Biopolymers. Vol 5. Wiley-VCH Verlag Gmbh, Germany
  3. Iizuka, M., N. Minamiura, and T. Ogura (2000), Glycoenzymes. Japan Scientific Societies Press, Japan
  4. Robinson, R. (1995), The potential of inulin as a functional ingredient, Brit. Food J. 97, 30-32
  5. Kang, T. H., S. J. Jung, S. A. Kang, K. H. Jang, E. K. Jang, S. H. Kim, I. H. Kim, C. H. Kim, S. K. Rhee, and U. H. Chun (2002), Preparation of levan oligosaccharides by acid hydrolysis and its application in growth of lactic acid-producing bacteria, Korean J. Biotechnol. Bioeng. 17, 137-141
  6. Jang, K. H., S. A. Kang, Y. Cho, Y. Y. Kim, Y. J. Lee, K. Hong, E. K. Jang, C. H. Kim, and R. W. Choue (2002), The effects of levan and inulin on the growth of lactic acid-producing bacteria and intestinal conditions in rats, Korean J. Nutr. 35, 912-918
  7. Kang, S. A., and K. H. Jang. (2005), Effect of dietary fructan on cecal enzyme activities in rat, Biotechnol. Bioprocess Eng. 10, in press
  8. Seo, E. S. , J. H. Lee, J. Y. Cho, M. Y. Seo, H. S. Lee, S. S. Chang, H. J. Lee, J. S. Choi, and D. M. Kim (2004), Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose, Biotechnol. Bioprocess Eng. 9, 339-344 https://doi.org/10.1007/BF02933054
  9. Marx, S. P., S. Winkler, and W. Hartmeier (2000), Metabolization of $\beta$-(2,6)-linked fructose-oligosaccharides by different Bifidobacteria, FEMS. Microbiol. Lett. 182, 163-169
  10. Roberfroid, M. B. (1999), Caloric value of inulin and oligofructose, Am. J. Clin. Nutr. 129, 1436S-1437S
  11. Kang, S. K., S. J. Park, J. D. Lee, and T. H. Lee (2000), Physiological effects of levanoligosaccharide on growth of intestinal microflora, J. Korean Soc. Food Sci. Nutr. 29, 35-40
  12. Yoshimizu, M., Y. Ezura, and I. Kojma (1996), Effects of levans and oligolevans on cultured cells originated from fish when subjected them to freeze preservation. Annual meeting of the Japanese Society of Fisheries Science 1996, p.24
  13. Ohta, A., M. Ohtsuki, S. Baba, M. Hirayama, and T. Adachi (1998), Comparison of the nutritional effects of fructooligosaccharides of different sugar chain length in rats, Nutr. Res. 18, 109-120 https://doi.org/10.1016/S0271-5317(97)00205-4
  14. Seo, J. W., K. H. Jang, S. A. Kang, K. B. Song, E. K. Jang, B. S. Park, C. H. Kim, and S. K. Rhee (2002), Molecular characterization of the growth phase-dependent expression of the lsra gene, encoding levansucrase of Rahnella aquatilis, J. Bacteriol. 184, 5862-5870 https://doi.org/10.1128/JB.184.21.5862-5870.2002
  15. Blecker, C., C. Fougnies, J. C. van Herck, J. P. Chevalier, and M. Paquot (2002), Kinetic study of acid hydrolysis of various oligofructose samples, J. Agric. Food Chem. 50, 1602-1607 https://doi.org/10.1021/jf010905b
  16. Roberfroid, M. B., and N. M. Delzenne (1998), Dietary fructans, Annu. Rev. Nutr. 18, 117-143 https://doi.org/10.1146/annurev.nutr.18.1.117
  17. Jang, K. H., S. A. Kang, Y. H. Cho, Y. Y. Kim, Y. J. Lee, K. H. Hong, K. H. Seong, S. H. Kim, C. H. Kim, S. K. Rhee, S. D. Ha, and R. W. Choue (2003), Prebiotics properties of levan in rats, J. Microbiol. Biotechnol. 13, 348-353