Expression and Purification of Recombinant Human Interferon-gamma Produced by Escherichia coli

대장균이 생산한 재조합 인체 감마인터페론의 발현과 정제

  • Published : 2006.06.28

Abstract

For the production of the recombinant human interferon-gamma(rhIFN-${\gamma}$) in Escherichia coli, human glucagon and ferritin heavy chain were used as fusion partners. Even though rhIFN-${\gamma}$ is expressed as an inclusion body form in E. coli because of strong hydrophobicity of itself, over 50% of fused rhIFN-${\gamma}$ was expressed as soluble form in E. coli $Origami^{TM}$(DE3) harboring pT7FH(HE)-IFN-${\gamma}$ which encodes ferritin heavy chain-fused rhIFN-${\gamma}$. In the case of using glucagon-ferritin heavy chain hybrid mutant as a fusion partner, 6X His-tag was additionally introduced to N-terminus of GFHM(HE)-IFN-${\gamma}$ for enhancing purification yields of rhIFN-${\gamma}$. Fusion protein HGFHM(HE)-IFN-${\gamma}$ with two 6X His-tag was more effectively bound to Ni-NTA agarose bead than GFHM(HE)-IFN-${\gamma}$ with a 6X His-tag. rhIFN-${\gamma}$ was completely purified from enterokinase-treated HGFHM(HE)-IFN-${\gamma}$ by Ni-NTA affinity column. For high-level production of rhIFN-${\gamma}$, glucose was used as the sole carbon source with simple exponential feeding rate($2.4{\sim}7.2g/h$) in fed-batch process. The effective lactose concentration for the expression of the rhIFN-${\gamma}$ was $10{\sim}20mM$. Under the fed-batch culture conditions, rhIFN-${\gamma}$ production yield reached 11 g DCW/L for 6 hours after lactose induction.

IFN-${\gamma}$의 대량생산을 위한 기초연구로서 IFN-${\gamma}$의 아미노 말단에 glucagon과 ferritin을 융합파트너로 각각 결합시켜 재조합 IFN-${\gamma}$의 발현을 유도하였다. 대장균 내에서 발현되는 IFN-${\gamma}$는 그 자체로 매우 강한 소수성 결합의 양상을 나타내어 inclusion body 형태로 발현된다고 알려져 있으나 OrigamiTM(DE3) 균주로부터 50% 이상의 수용성 형태로 발현시켰다. IFN-${\gamma}$로부터 융합파트너를 제거할 수 있는 system을 개발하기 위해 융합파트너와 IFN-${\gamma}$ 사이에 enterokinase cleavage site를 도입하였으며, enterokinase에 의해 IFN-${\gamma}$에는 영향을 미치지 않고 효과적으로 융합파트너를 제거할 수 있었다. 재조합 IFN-${\gamma}$의 분리 및 정제를 위해 발현벡터상의 융합파트너와 IFN-${\gamma}$사이에 6X His-tag을 도입하였고 융합파트너의 N-말단에도 6X His-tag을 추가적으로 도입함으로써 융합파트너와 더불어 enterokinase에 의해 분해되지 않은 융합단백질을 Ni-NTA agarose column으로 제거함으로서 IFN-${\gamma}$를 완전 정제할 수 있었다. IFN-${\gamma}$의 발현을 유도하는 발현유도체로서 15 mM lactose를 이용하여 5 L 발효조에서 IFN-${\gamma}$의 발현을 검토한 결과, 재조합 균체의 단위 건조질량(dry cell weight, g)으로 약 11 g DCW/L 수준의 재조합 융합단백질을 얻을 수 있었다.

Keywords

References

  1. Isaacs, A., J. Lindemann, and R. C. Valentine (1957), Virus interference. II. Some properties of interferon, Proc. Roy. Soc. London (Biol). 147(B), 268-273
  2. Loosdrecht, van de A., G. J. Ossenkoppele, R. H. Beelen, M. G. Broekhoven, M. M. Langenhuijsen (1992), Role of interferon gamma and tumour necrosis factor alpha in monocyte-mediated cytostasis and cytotoxicity against a human histiocytic lymphoma cell line, Cancer Immunol. Immunother. 34(6), 393-398 https://doi.org/10.1007/BF01741750
  3. Fidler, I. J., W. E. Fogler, E. S. Kleinerman, and I. Saiki (1985), Abrogation of species specificity for activation of tumoricidal properties in macrophages by recombinant mouse or human interferon-$\gamma$ encapsulated in liposomes, J. Immunol. 135, 4289-4296
  4. Mehta, K., R. L. Juliano, and G. Lopez-Berestein (1984), Stimulation of macrophage protease secretion via liposomal delivery of muramyl dipeptide derivatives to intracellular sites, Immunology 51, 517-527
  5. Smith, M. R., K. Muegge, J. R. Keller, H.-F. Kung, H. A. Young, and S. K. Durum (1990), Direct evidence for an intracellular role for IFN-$\gamma$: microinjection of human IFN-$\gamma$ induces Ia expression on murine macrophages, J. Immunol. 144, 1777-1782
  6. Pfeffer, L. M., C. A. Dinarello, R. B. Herberman, B. R. Williams, E. C. Borden, R. Bordens, M. R. Walter, T. L. Nagabhushan, P. P. Trotta, and S. Pestka (1998), Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons, Cancer Res. 58(12), 2489-2499
  7. Pestka, S. (1997), The human interferon-alpha species and hybrid proteins, Semin. Oncol. 24(suppl. 9), S9-4-S9-17
  8. Sreevalsan, T. (1995), Biological therapy with Interferon-alfa and beta: preclinical studies. In: DeVita V. T. J., S. M. D. Hellman, S. A. Rosenberg, eds. Biologic Therapy of Cancer, 2nd ed., Philadelphia: J. B. Lippincott Company, 347-364
  9. Naylor, S. L., A. Y. Sakaguchi, T. B. Shows, M. L. Law, D. V. Goeddel, and P. W. Gray (1983), Human immune interferon gene is located on chromosome 12, J. Exp. Med. 57, 1020-1027
  10. Nagata, S., N. Mantei, and C. Weissmann (1980), The structure of one of the eight or more distinct chromosomal genes for human interferon-alpha, Nature 287, 401-408 https://doi.org/10.1038/287401a0
  11. Nagata, S., H. Taira, A. Hall, L. Johnstrud, M. Streuli, J. Escodi, W. Boll, K. Cantell, and C. Weissmann (1980), Synthesis in E. coli of a polypeptide with human leukocyte interferon activity, Nature 284, 316-320 https://doi.org/10.1038/284316a0
  12. Goldberg, M. M., L. S. Belkowski, and B. R. Bloom (1989), Regulation of macrophage growth and antiviral activity by interferon-gamma, J. Cell Biol. 109, 1331-1340 https://doi.org/10.1083/jcb.109.3.1331
  13. Gattacceca, F., Y. Pilatte, C. Billard, I. Monnet, S. Moritz, J. Le Carrou, M. Eloit, and M.-C. Jaurand (2002), Ad-IFN-$\gamma$ induces antiproliferative and antitumoral responses in malignant mesothelioma, Clin. Cancer Res. 8(10), 3298-3304
  14. Shuai, K., J. Liao, and M. M. Song (1996), Enhancement of antiproliferative activity of gamma interferon by the specific inhibition of tyrosine dephosphorylation of Stat1, Mol. Cell Biol. 16(9), 4932–4941
  15. Dalton, D. K., S. Pitts-Meek, S. Keshav, I. S. Figari, A. Bradley, T. A. Stewart (1993), Multiple defects of immune cell function in mice with disrupted interferon-gamma genes, Science 259(5102), 1739-1742 https://doi.org/10.1126/science.8456300
  16. Billiau, A. A., H. Heremans, K. Vermeire, and P. Matthys (1998), Immunomodulatory Properties of Interferon-$\gamma$: An Update, Ann. N.Y. Acad. Sci., 856(1), 22-32 https://doi.org/10.1111/j.1749-6632.1998.tb08309.x
  17. Shin, C. S., M. S. Hong, C. S. Bae, D. Y. Kim, H. C. Shin, and J. Lee (1988), Growth-associated synthesis of recombinant human glucagon and human growth hormone in high-cell-density cultures of Escherichia coli, Appl. Microbiol. Biotechnol. 49, 364-370 https://doi.org/10.1007/s002530051183
  18. Sasaki, K., S. Dockerill, D. A. Adamiak, I. J. Tickle, and T. Blundell (1975), X-ray analysis of glucagon and its relationship to receptor binding, Nature 257, 751-757 https://doi.org/10.1038/257751a0
  19. Saraswat, V., J. Lee, D. Y. Kim, and Y. H. Park (2000), Synthesis of recombinant human interleukin-2 via controlled feed of lactose - complex media in fed-batch cultures of Escherichia coli BL21(DE3) [pT7G3-IL2] Biotechnol. Letters 22, 261-265 https://doi.org/10.1023/A:1005638602146
  20. Lee, J., S. W. Kim, Y. H. Kim, and J. Y. Ahn (2002), Active human ferritin H/L-hybrid and sequence effect on folding efficiency in Escherichia coli, Biochem. Biophys. Res. Commun. 298, 225-229 https://doi.org/10.1016/S0006-291X(02)02429-4
  21. Sambrook, J. and D. W. Russell (2001), Molecular Cloning - a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press
  22. Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (2002), Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology, 5th ed. John Wiley & Sons, Inc
  23. Bradford, M. M. (1976), A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  24. Alonso, A., G. Morales, R. Escalante, E, Campanario, L, Sastre, and J. L. Martinez (2004), Overexpression of the multidrug efflux pump SmeDEF impairs Stenotrophomonas maltophilia physiology, J. Antimicrob. Chemother. 53, 432-434 https://doi.org/10.1093/jac/dkh074
  25. Buchel, D. E., B. Gronenborn, and B. Muller-Hill (1980), Sequence of the lactose permease gene, Nature 283, 541-545 https://doi.org/10.1038/283541a0
  26. Kaback, H. R., S. Frillingos, H. Jung, K. Jung, G. G. Prive, M. L. Ujwal, C. Weitzman, J. Wu, and K. Zen (1994), The lactose permease meets Frankenstein, J. Exp. Biol. 196, 183-195