Bacterial Behavior in Soil under Electric Field and its Effect on Electrokientic Bioremediation

전기장하 토양내에서 미생물 이동특성과 동전기 생물학적복원의 효과

  • Kim, Sang-Joon (The Korean Intellectual Property Office) ;
  • Park, Ji-Yeon (Korea Institute of Energy Research) ;
  • Lee, You-Jin (Department of Chemical and Biomolecular Engineering, KAIST) ;
  • Yang, Ji-Won (Department of Chemical and Biomolecular Engineering, KAIST)
  • Published : 2006.06.28

Abstract

In this study, it could be found that the microbial movement in soil under electric field mainly occurred by electrophoresis and electroosmosis. The contribution of electrophoresis on the microbial mobility and flux was generally higher than that of electroosmosis. In the electrokinetic(EK) bioremediation of a pentadecane-contaminated soil, the microbial population increased simultaneously at anode and cathode regions of the soil specimen because both electrophoresis and electroosmosis affected on the microbial movement. After initial operation, the microbial population was high in order of anode, middle, and cathode regions due to their negatively-charged surface and oxygen generation at anode. However, the uniform contaminant removal was achieved by the microbial movement with two-directionality.

전기장하 토양 내에서 미생물 이동은 주로 전기영동과 전기삼투에 의해 일어나며 미생물의 이동속도와 유속에 대한 전기영동의 공헌도가 전기삼투보다 대체로 높게 나타났다. Pentadecane-오염토양에 대해 동전기 생물학적복원을 실시한 결과 토양내 미생물 농도는 전기영동과 전기삼투가 함께 작용하여 양극과 음극의 인접 토양에서 동시에 증가하였으며 초반 공정이후에는 미생물의 표면전하특성과 양극의 산소발생에 의하여 미생물 농도가 양극, 중간, 음극의 순서로 나타났다. 하지만 미생물의 양방향 이동으로 토양의 모든 위치에서 오염물이 균일하게 제거될 수 있었다. 미생물의 전기적 이동을 이용한 동전기 생물학적복원은 기존의 생물학적복원의 단점인 늦은 분해속도와 낮은 제거효율의 단점을 극복할 수 있었다.

Keywords

References

  1. Cookson, J. T. (1995), Bioremediation Engineeing, McGraw-Hill Inc., USA
  2. Mohammed, N. (1996), State-of-the-art review of bioremediation studies, J. Environ. Sci. Hlth. A31(7), 1547-1574
  3. Luo, Q., Zhang, X., Wang, H., and Qian, Y. (2005), The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol-contaminated soil, J. Hazard. Mater. B121, 187-194
  4. Chu, W. and Chan, K. H. (2003), The mechanism of the surfactant-aided soil washing system for hydrophobic and partial hydrophobic organics, Sci. Total Environ. 307, 83-92 https://doi.org/10.1016/S0048-9697(02)00461-8
  5. Yang, J. W., Lee, Y. J., Park J. Y., Kim, S. J., and Lee, J. Y. (2005), Application of APG and Calfax 16L-35 on surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite, Eng. Geol. 77(3-4), 243-251 https://doi.org/10.1016/j.enggeo.2004.07.015
  6. Seneviratne, G. and Jayasinghearachchi, H. S. (2005), A rhizobial biofilm with nitrogenase activity alters nutrient availability in a soil, Soil Bio. Biochem. 37, 1975-1978 https://doi.org/10.1016/j.soilbio.2005.02.027
  7. Rabbi, M. F., Clark, B., Gale, R. J., Ozsu-Acar, E., Pardue, J., and Jackson, J. (2000), In situ TCE bioremediation study electrokinetic cometabolite injection, Waste Manage. 20, 279-286 https://doi.org/10.1016/S0956-053X(99)00329-3
  8. DeFlaun, M. F. and Condee, C. W. (1997), Electrokinetic transport of bacteria, J. Hazard. Mater. 55, 263-277 https://doi.org/10.1016/S0304-3894(97)00023-X
  9. Shapiro A. P. and Probstein, R. F. (1993), Removal of contaminants from saturated clay by electroosmosis, Environ. Sci. Technol. 27(2), 283-291 https://doi.org/10.1021/es00039a007
  10. Acar, Y. B. and Alshawabkeh, A. N. (1996), Electrokinetic remediation. 1. Pilot-scale tests with lead spiked kaolinite, J. Geotec. Eng., 122, 173-185 https://doi.org/10.1061/(ASCE)0733-9410(1996)122:3(173)
  11. Pamukcu, S., Weeks, A., and Wittle, J. K. (1997), Electrochemical extraction and stabilization of selected inorganic species in porous media, J. Hazard. Mater. 55(1-3), 305-318 https://doi.org/10.1016/S0304-3894(97)00010-1
  12. Acar, Y. B. and Alshawabkeh, A. N. (1993), Principles of electrokinetic remediation, Environ. Sci. Technol. 27(13), 2638-2647 https://doi.org/10.1021/es00049a002
  13. Kim, S. J., Park, J. Y., Lee, Y. J., Lee, J. Y., and Yang, J. W. (2005), Application of a new electrolyte circulation method for ex situ electrokinetic bioremediation of a laboratory-prepared pentadecane contaminated kaolinite, J. Hazard. Mater. B118, 171-176
  14. Clarke, R. L., Lageman, R., Pool, W., and Clarke S. R., Electrochemically-aided biodigestion of organic materials, US Patent 5,846,393 (1998)
  15. Millacheruvu, K. and Alshawabkeh, A. N. (1999), Emerging Technologies in Hazardous Waste Management, Vol. VIII, Kluwer Academic/Plenum Publishers
  16. Boopathy, R. (2004), Anaerobic biodegradation of no. 2 diesel fuel in soil: a soil column study, Biotechnol. Technol. 94(2), 143-151
  17. Hess, A., Hohener, P., Hunkeler, D., and Zeyer, J. (1996), Bioremediation of a diesel fuel contaminated aquifer: Simulation studies in laboratory aquifer columns, J. Contam. Hydrol. 23(4), 329-345 https://doi.org/10.1016/0169-7722(95)00107-7