Fermentation Kinetics for Production of Carotenoids by ${\beta}$-ionone Resistant Mutant of Xanthophyllomyces dendrorhous

Xanthophyllomyces dendrorhous 변이군주에 의한 Carotenoids 생산 발효의 특성 연구

  • Park, Ki-Moon (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Kim, Young-Jun (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Song, Min-Woo (Department of Food Science and Biotechnology, Sungkyunkwan University) ;
  • Kang, Seog-Jin (Woojin Co., Ltd) ;
  • Lee, Jae-Heung (Institute of Life Science and Technology, Sungkyunkwan University)
  • 박기문 (성균관대학교 식품생명공학과) ;
  • 김영준 (성균관대학교 식품생명공학과) ;
  • 송민우 (성균관대학교 식품생명공학과) ;
  • 강석진 ((주)우진) ;
  • 이재흥 (성균관대학교 생명공학연구소)
  • Published : 2006.08.30

Abstract

Various ${\beta}$-ionone resistant mutants were isolated from the wild-type red yeast Xanthophyllomyces dendrorhous KCTC 7704. Although the growth of X. dendrorhous KCTC 7704 was strongly inhibited at 0.025 mM ${\beta}$-ionone, one of the ${\beta}$-ionone resistant mutants isolated at 0.1 mM ${\beta}$-ionone by NTG mutagenesis showed rather 70% of relative survival at 0.15 mM ${\beta}$-ionone. Fermentation kinetics study with the mutant was carried out at $20^{\circ}C$ for 4 days in 300-mL baffled flasks. The mutant yielded up to 2.3-fold higher carotenoids content(viz. $1.2{\mu}g$ of total carotenoids per mg of dry cells) compared with the wild-type strain. The production of metabolites such as organic acids could be neglected. Studies on the kinetics with various carbon substrates revealed both an increase in final dry cell mass and a higher total carotenoids content in cell mass with glucose when compared to fructose or sucrose. As a further part of study, the effect of pH on the fermentation kinetics was investigated in glucose-limited chemostat at a dilution rate of $0.04h^{-1}$. When compared to steady-state kinetic parameters obtained at pH 4.0, a significant reduction in cell concentration at pH 3.0 and a lower carotenoids content at pH 5.2 were evident.

본 연구에서는 적효모 X. dendrorhous KCTC 7704로부터 여러 ${\beta}$-ionone 내성 변이균주를 선별하였다. 야생균 KCTC 7704는 ${\beta}$-ionone 0.021 mM 농도에서 생육이 현저히 저하되었지만, NTG처리 후 ${\beta}$-ionone 0.1 mM 농도에서 선별된 변이균주는 ${\beta}$-ionone 0.15 mM에서도 70% 이상의 상대 생육율을 나타내는 매우 강한 ${\beta}$-ionone 내성을 갖고 있었다. 여러 ${\beta}$-ionone 농도에서 선별한 변이균주들을 $20^{\circ}C$에서 4일간 회분식 발효로 배양하여 그 특성을 조사하였다. 선별된 가장 우수한 변이균주는 야생균주보다 카로티노이드 생성능이 2.3배 향상(즉 $1.2{\mu}g$ of total carotenoids per mg of dry cells)되었으며 유기산과 같은 대사산물은 거의 생성하지 않았다. 여러 탄소원 들에 대한 비교 발효특성 연구 결과 과당이나 자당을 사용했을 때봐 비교하여 포도당 배지에서 최종 균체농도 및 총 카로티노이드 생성량이 많았다. 포도당이 제한되는 연속발효(dilution rate $0.04h^{-1}$) 실험을 통하여 pH의 영향을 조사한 결과 균체농도 및 총 카로티노이드 생성은 pH 4.0 조건하에서 최적인 것을 알 수 있었다.

Keywords

References

  1. An, G. H., D. B. Schuman, and E. A. Johnson (1989), Isolation of Phaffia rhodozyma mutants with increased astaxanthin content, Appl. Environ. Microbiol. 55, 116-124
  2. Yamane, Y., K. Higashida, Y. Nakashimada, T. Kakizono, and N. Nishio (1997), Influence of oxygen and glucose on primary metabolism and astaxanthin production by Phaffia rhodozyma in batch and fed-batch cultures: Kinetic and stoichiometric analysis, Appl. Environ. Microbiol. 63, 4471-4478
  3. Ramirez J., H. Gutierrez, and A. Gschaedler (2001), Optimization of astaxanthin production by Phaffia rhodozyma through factoral design and response surface methodology, J. Biotechnol. 88, 259-268 https://doi.org/10.1016/S0168-1656(01)00279-6
  4. Lorenz, R. T. and G. Cysewski (2000), Commercial potential for Haematococcus microalgae as a natural source of astaxanthin, Trends Biotechnol. 18, 160-167 https://doi.org/10.1016/S0167-7799(00)01433-5
  5. Parajo, J., V. Santos, and M. Vazquez (1998), Production of carotenoids by Phaffia rhodozyma growing on media made from hemicellulosic hydrolysated of Eucalyptus globulus wood, Biotechnol. Bioeng. 59, 501-506 https://doi.org/10.1002/(SICI)1097-0290(19980820)59:4<501::AID-BIT13>3.0.CO;2-C
  6. Guerin, M., M. E. Huntley, and M. Olaizola (2003), Haematococcus astaxanthin: applications for human health and nutrition, Trends Biotechnol. 21, 210-216 https://doi.org/10.1016/S0167-7799(03)00078-7
  7. Yu, S. S. and Y. W. Ryu (2001), Selection of mutant Phaffia rhodozyma and determination of optimum culture conditions for astaxanthin production, Kor. J. Appl. Microbiol. Biotechnol. 29, 96-103
  8. Kobayashi, M. (2003), Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis, Biotechnol. Bioprocess Bioeng. 8, 322-330 https://doi.org/10.1007/BF02949275
  9. Renstorm, B., G. Broch, O. M. Skulberg, and S. Liaaen-Jensen (1981), Optical purity of (3S,3'S)-astaxanthin from Haematococcus pluvialis, Phtochemistry 20, 2561-2564 https://doi.org/10.1016/0031-9422(81)83094-4
  10. McCoy, M. (1999), Astaxanthin market a hard one to crack, Chem. & Eng. News 77, 15-17 https://doi.org/10.1021/cen-v077n015.p015
  11. Haard, N. F. (1988), Astaxanthin formation by the yeast Phaffia rhodozyma on molasses, Biotechnol. Lett. 10, 609-614 https://doi.org/10.1007/BF01024710
  12. Vazquez, M. and A. M. Martin (1998), Optimization of Phaffia rhodozyma continuous culture through response surface methodology, Biotechnol. Bioeng. 57, 314-320 https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3<314::AID-BIT8>3.0.CO;2-K
  13. Yamane, Y., T. Mikami, K. Higashida, T. Kakizono, and N. Nishio (1996), Estimation of the concentrations of cells, astaxanthin and glucose in a culture of Phaffia rhodozyma by near infrared reflectance spectroscopy, Biotechnol. Tech. 10, 529-534
  14. Siva Kesava, S., G. H. An, C. H. Kim, S. K. Rhee, and E. S. Choi (1998), An industrial medium for improved production of carotenoids from a mutant strain of Phaffia rhodozyma, Bioprocess Eng. 19, 165-170
  15. Visser, H., A. J. J. van Ooyen, and J. C. Verdoes (2003), Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous, FEMS Yeast Research 4, 221-231 https://doi.org/10.1016/S1567-1356(03)00158-2
  16. Lewis, M. J., N. Ragot, M. C. Berlant, and M. Miranda (1990), Selection of astaxanthin-overproducing mutants of Phaffia rhodozyma with $\beta$-ionone, Appl. Environ. Microbiol. 56, 2944-2945
  17. Fang, T. J. and Y. S. Cheng (1993), Improvement of astaxanthin production by Phaffia rhodozyma through mutation and optimization of culture conditions, J. Ferment. Bioeng. 75, 466-469 https://doi.org/10.1016/0922-338X(93)90099-T
  18. Lim, D. T. and E. K. Lee (2000), Fermentation process characteristics of Phaffia rhodozyma mutant B76 for astaxanthin biosynthesis, Korean J. Biotechnol. Bioeng. 15, 125-133
  19. Sedmak, J. J., D. K. Weerasinghe, and S. O. Jolly (1990), Extraction and quantitation of astaxanthin from Phaffia rhodozyma, Biotechnol. Tech. 4, 107-112 https://doi.org/10.1007/BF00163282
  20. An, G. H. and E. S. Choi (2003), Preparation of the red yeast, Xanthophyllomyces dendrorhous, as feed additive with increased availability of astaxanthin, Biotechnol. Lett. 25, 767-771 https://doi.org/10.1023/A:1023568319114
  21. Calo, P., J. B. Velazquez, C. Sieiro, P. Blanco, E. Longo, and T. Villa (1995), Analysis of astaxanthin and other carotenoids from several Phaffia rhodozyma mutants, J. Agri. Food Chem. 43, 1396-1399 https://doi.org/10.1021/jf00053a049
  22. An, G. H., O. S. Suh, H. C. Kwon, and E. A. Johnson (2000), Quantification of carotenoids in cells of Phaffia rhodozyma by autofluorescence, Biotechnol. Lett. 22, 1031-1034 https://doi.org/10.1023/A:1005614010003
  23. Yamane, Y., K. Higashida, Y. Nakashimada, T. Kakizono, and N. Nishio (1997), Astaxanthin production by Phaffia rhodozyma enhanced in fed-batch culture with glucose and ethanol feeding, Biotechnol. Lett. 19, 1109-1111 https://doi.org/10.1023/A:1018492611011
  24. Tsukatani, T. and K. Matsumoto (1999), Enzymatic quantification of L-tartarate in wines and grapes by using the secondary activity of D-malate dehydrogenase, Biosci. Biotechnol. Biochem. 63, 1730-1735 https://doi.org/10.1271/bbb.63.1730
  25. Vazquez, M. and A. M. Martin (1998), Optimization of Phaffia rhodozyma continuous culture through response surface methodology, Biotechnol. Bioeng. 57, 314-320 https://doi.org/10.1002/(SICI)1097-0290(19980205)57:3<314::AID-BIT8>3.0.CO;2-K
  26. Meyer, P. S. and J. C. Du Preez (1994), Effect of continuous conditions on astaxanthin production by a mutant of Phaffia rhodozyma in batch and chemostat culture, Appl. Microbiol. Biotechnol. 40, 780-785 https://doi.org/10.1007/BF00173974