References
- Lander, E. (1999), Array of hope, Nature Genet. 21, 3-4 https://doi.org/10.1038/4427
- Pilpel, Y., P. Sudarsanam, and G. Church (2001), Identifying regulatory networks by combinatorial analysis of promoter elements, Nature Genet. 29, 153-159 https://doi.org/10.1038/ng724
- Pearl, J. (2005), Probabilistic reasoning in intelligent systems: networks of plausible inference, Morgan Kaufmann, San Francisco
- Buntine, W. (1994), Operations for learning with graphical models. J. Artif. Intel. Res. 2, 159-225
- Getoor, L., N. Friedman, D. Koller, and A. Pfeffer (2001), In Relational Data Mining, Learning Probabilistic Relational Models, S. Dzeroski and N. Lavrac, Eds., pp.307-337. Springer-Verlag, Berlin
- Segal, E., B. Taskar, A. Gasch, N. Friedman, and D. Koller (2001), Rich probabilistic models for gene expression, Bioinformatics 17(suppl. 1), S243 https://doi.org/10.1093/bioinformatics/17.suppl_1.S243
- Barash, Y. and N. Friedman (2002), Context-specific Bayesian clustering for gene expression data, J. Comp. Biol. 9, 169-191 https://doi.org/10.1089/10665270252935403
- Holmes, I. and W. Bruno (2000), Finding regulatory elements using joint likelihoods for sequence and expression profile data, Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 202-210
- Segal, E., R. Yelensky, and D. Koller (2003), Genome-wide discovery of transcriptional modules from DNA sequence and gene expression, Bioinformatics 19(suppl. 1), I273- I282 https://doi.org/10.1093/bioinformatics/btg1038
- Gasch, A. P. et al. (2000), Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11, 4241-57 https://doi.org/10.1091/mbc.11.12.4241
- Lee, T. et al. (2002), Transcriptional regulatory networks in Saccharomyces cerevisiae, Science 298, 799-804 https://doi.org/10.1126/science.1075090