$CaCO_3$를 이용한 발포 마그네슘 합금의 제조

Fabrication of Mg Alloy Foam via Melting Foaming Method Using $CaCO_3$ as Blowing Agent

  • 양동휘 (클러스터, i-cube Center, 경상대학교) ;
  • 서창환 (클러스터, i-cube Center, 경상대학교) ;
  • 왕효숭 (클러스터, i-cube Center, 경상대학교) ;
  • 허보영 (클러스터, i-cube Center, 경상대학교)
  • Yang, Dong-Hui (K-MEM R&D Cluster-GSNU, Div. of Mat. Eng., Gyeongsang, Nat. Univ., i-Cube Center, School of Nano & advanced Materials Engineering, Gyeongsang, Nat. Univ.) ;
  • Seo, Chang-Hwan (K-MEM R&D Cluster-GSNU, Div. of Mat. Eng., Gyeongsang, Nat. Univ., i-Cube Center, School of Nano & advanced Materials Engineering, Gyeongsang, Nat. Univ.) ;
  • Wang, Xiao-Song (K-MEM R&D Cluster-GSNU, Div. of Mat. Eng., Gyeongsang, Nat. Univ., i-Cube Center, School of Nano & advanced Materials Engineering, Gyeongsang, Nat. Univ.) ;
  • Hur, Bo-Young (K-MEM R&D Cluster-GSNU, Div. of Mat. Eng., Gyeongsang, Nat. Univ., i-Cube Center, School of Nano & advanced Materials Engineering, Gyeongsang, Nat. Univ.)
  • 발행 : 2006.12.20

초록

[ $CaCO_3$ ]를 발포제로 사용하여 균일한 기공구조를 가지는 AZ91과 AM60 마그네슘 합금의 발포 금속을 주조법을 통하석 제조하였다. 발포 금속의 제조가 가능한 이유와 발포 마그네슘 합금의 기공구조가 연구를 통하여 논의되었다. 마그네슘 합금의 용탕은 $CaCO_3$의 분해 거동에 영향을 미친다. 제조된 AZ91 마그네슘 합금의 발포 금속은 높은 기공률과 큰 기공의 크기를 가졌으며, 발포 금속들 중에서 상대적으로 쉽게 발포되는 것으로 판단된다.

For the first time AZ91 (MgAl9Zn1) and AM60 (MgAl6) Mg alloy foams with homogeneous pore structures were prepared successfully via melting foaming method by using $CaCO_3$ powder as blowing agent. The possible foaming mechanisms and pore structures of these Mg alloy foams were discussed and investigated. The results show that Mg alloy melt can affect $CaCO_3$ decomposition behavior and AZ91 Mg alloy is relative easy to be foamed into metal foam with high porosity and big pore size.

키워드

참고문헌

  1. J. Banhart: Progress in Materials Science, 'Manufacture, characterisation and application of cellular metals and metal foams', 46 (2002) 559-632
  2. J. Banhart: Int. J. Vehicle Des., 'Aluminium foams for lighter vehicles', 37 (2005) 114-125 https://doi.org/10.1504/IJVD.2005.006640
  3. C. E. Wen, M. R. Barnett, J. Vella, and Y. Yamada. In: H. Nakajima, N. Kanetake (Eds.), Porous Metals and Metal Foaming Technology, The Japan Institute of Metal, Japan, 2005, 165-168
  4. C. Komer, M. Hirschmann, M. Lamm, and R. F. Singer. In: John Banhart, Norman A. Fleck, Andreas Mortensen (Eds.), Proceeding of International Conference on Cellular Metals: Manufacture, Properties, Applications, Verlag MIT Publishing, 2003, 209-214
  5. K. Renger and H. Kaufmann: Adv. Eng. Mater., 'Vacuum foaming of magnesium slurries', 6(3) (2005) 117-123
  6. Z. K. Xie, M. Tane, S. K. Hyun, Y. Okuda, and H. Nakajima: Mater. Sci. Eng. A, 'Vibration-damping capacity of lotustype porous magnesium', 417 (2006) 129-133 https://doi.org/10.1016/j.msea.2005.10.061
  7. T. Nakamura, S. V. Gnyloskurenko, K. Sakamoto, A. V. Byakova, and R. Ishikawa, Mater. Trans., 'Devlopment of new foaming agent for metal foam', 43(5) (2002) 1191-1196 https://doi.org/10.2320/matertrans.43.1191
  8. V. Gergely, D. C. Curran, and T. W. Clyne: Compos. Sci. Technol., 'The FOAMCARP process: foaming of aluminium MMCs by the chalk-aluminium reaction in precursors', 63 (2003) 2301 https://doi.org/10.1016/S0266-3538(03)00263-X
  9. S. H. Park and B. Y. Hur: Mater. Sci.Forum, 486-487, 'Rheology characteristics of Al-Si alloy and Mg alloy for metal foam manufacturing', (2005) 464-467
  10. S. H. Park, K. H. Song, Y. S. Urn, and B. Y. Hur: Mater. Sci.Forum, 'Rheological characteristics of mg-al alloys with ceramic particles for metal foam', 510-511 (2006) 742-745
  11. X. C. Fu, W. X. Shen, and T. Y. Yao: Physical Chemistry, forth edition, Higher Education Press, Beijing, 2004
  12. E. E Underwood: Quantitative Stereo logy, Addison-Wesley, Massachusetts, 1970