Surface roughness and surface free energy components of various orthodontic adhesives

다양한 교정용 접착제의 표면거칠기와 표면에너지 요소 분석

  • Ahn, Hyo-Beom (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Ahn, Sug-Joon (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University) ;
  • Nahm, Dong-Seok (Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University)
  • 안효범 (서울대학교 치과대학 교정학교실) ;
  • 안석준 (서울대학교 치과대학 교정학교실) ;
  • 남동석 (서울대학교 치과대학 교정학교실)
  • Published : 2006.10.30

Abstract

Objective: Surface characteristics of dental materials play an important role in bacterial adhesion. The purpose of this study was to investigate surface characteristics of 5 different light-cured orthodontic adhesives (1 fluoride-releasing composite, 3 non-fluoride-releasing composites, and f resin-modified glass ionomer). Methods: Surface roughness was measured using a confocal laser scanning microscope. Contact angle and surface free energy components were analyzed using the sessile drop method. Results: Surface roughness was significantly different between adhesives despite a relatively small variation (less than $0.05\;{\mu}m$). Lightbond and Monolok2 were rougher than Enlight and Transbond XT. There were also significant differences in contact angles and surface free energy components between adhesives. In particular, considerable differences in contact angles and surface free energy components were found between resin modified glass ionomer and the composites. Resin modified glass ionomer showed significantly smaller contact angles in 3 different probe liquids and had higher total surface free energy and stronger polarity, with notably stronger basic property than the composites. Conclusion: Resin modified glass ionomer may provide a more favourable environment for bacterial adhesion than composite adhesives.

치과용 재료의 표면특성은 세균 부착에 중요한 역할을 한다. 본 연구의 목적은 다섯 종류의 광중합 교정용 접착제(불소를 방출하지 않는 세 종류의 콤포지트 레진, 불소를 방출하는 콤포지트 레진 한 종류, 레진 변형 글래스아이오노머 시멘트 한 종류)의 표면특성을 평가하는 것이다. 표면거칠기는 공초점 레이저주사전자현미경을 이용하여 측정하였고, 접촉각과 표면에너지 요소는 sessile drop method를 이용하여 분석하였다. 본 연구의 결과 교정용 접착제간 표면거칠기는 각 재료간 표면거칠기 차이가 $0.05\;{\mu}m$ 이하로 상대적으로 적지만 각 재료 사이에 유의성 있는 차이를 보였다. Transbond XT와 Enlight는 Monolok2와 Lightbond 보다 유의하게 덜 거칠었다. 접촉각과 표면에너지 구성성분은 접착제 사이에 유의성 있는 큰 차이를 보였는데 특히 레진 변형 글래스아이오노머와 콤포지트 레진 접착제간에 접촉각과 표면에너지에서 커다란 차이를 보였다. 레진 변형 글래스아이오노머의 경우 콤포지트 레진 접착제에 비해 유의하게 작은 접촉각과 높은 표면에너지를 보였으며 콤포지트 레진 접착제보다 강한 극성, 특히 강한 염기성 경향을 보였다 본 연구는 레진 변형 글래스아이오노머가 콤포지트 레진 접착제에 비해 세균 부착에 유리한 환경을 제공한다는 것을 보여주었다.

Keywords

References

  1. Gorelick L., Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod 1982;81:93-8 https://doi.org/10.1016/0002-9416(82)90032-X
  2. Artun J, Brobakken BO. Prevalence of caries and white spots after orthodontic treatment with multibonded appliances. Eur J Orthod 1986; 8:229-34 https://doi.org/10.1093/ejo/8.4.229
  3. Chestnutt IG, MacFarlane TW, Stephen KW. An in vitro investigation of the cariogenic potential of oral streptococci. Arch Oral Biol 1994;39:589-93 https://doi.org/10.1016/0003-9969(94)90134-1
  4. Featherstone JD. The science and practice of caries prevention. J Am Dent Assoc 2000;131:887-99 https://doi.org/10.14219/jada.archive.2000.0307
  5. Babaahmady KG, Challacombe SJ, Marsh PD, Newman HN. Ecological study of Streptococcus muians, Streptococcus sobrinus and Lactobacillus spp. at sub sites from approximal dental plaque from children. Caries Res 1998;32:51-8 https://doi.org/10.1159/000016430
  6. Hamada S, Slade HD. Biology, immunology, and cariogenicity of Streptococcus mutans. Microbiol Rev 1980;44:331-84
  7. Gwinnett AJ, Ceen RF. Plaque distribution on bonded brackets: A scanning microscope study. Am J Orthod 1979;75:667-77 https://doi.org/10.1016/0002-9416(79)90098-8
  8. Mitchell L. Decalcification during orthodontic treatment with fixed appliance-an overview. Br J Orthod 1992;19:199-205 https://doi.org/10.1179/bjo.19.3.199
  9. Eliades T, Eliades G, Brantley W. Microbial attachment on orthodontic appliances: I. Wettability and early pellicle formation on bracket materials. Am J Orthod Dentofacial Orthop 1995;108:351-60 https://doi.org/10.1016/S0889-5406(95)70032-3
  10. Ahn SJ, Kho HS, Lee SW, Nahm DS. Roles of salivary proteins in the adherence of oral streptococci to various orthodontic brackets. J Dent Res 2002;81:411-5 https://doi.org/10.1177/154405910208100611
  11. Gwinnett AJ, Ceen RF. Plaque distribution on bonded brackets: A scanning microscopy study. Am J Orthod 1979;75:667-77 https://doi.org/10.1016/0002-9416(79)90098-8
  12. Sukontapatipark W, el-Agroudi MA, Selliseth NJ, Thunold K, Selvig KA. Bacterial colonization associated with fixed orthodontic appliances. A scanning electron microscopy study. Eur J Orthod 2001;23;475-84 https://doi.org/10.1093/ejo/23.5.475
  13. Sardin S, Mortier JJ, Benay G, Barsotti O. In vitro streptococcal adherence on prosthetic and implant materials. Interaction with physicochemical surface properties. J Oral Rehab 2004;31:140-148 https://doi.org/10.1046/j.0305-182X.2003.01136.x
  14. Quirynen M, Marechal M, Busscher HJ, Weerkarnp AH, Darius PL, van Steenberghe D. The influence of surface free energy and surface roughness on early plaque formation, an in vivo study in man. J Clin Periodontol 1990;17:138-44 https://doi.org/10.1111/j.1600-051X.1990.tb01077.x
  15. Quirynen M, Bollen CM. The influence of surface roughness and surface free-energy on supra- and subgingival plaque formation in man. A review of literature. J Clin Periodontol 1995;22:1-14 https://doi.org/10.1111/j.1600-051X.1995.tb01765.x
  16. Busscher HJ, Weerkamp AH, ven der Mei HC, van Pelt AW, de long HP, Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl Environ Microbiol 1984;48:980-3
  17. van Loosdrecht MC, Norde W, Zehnder AJ. Physical chemical description of bacterial adhesion. J Biomater Appl 1990;5:91-100 https://doi.org/10.1177/088532829000500202
  18. Gorton J, Featherstone JD. In vivo inhibition of demineralization around orthodontic brackets. Am J Orthod Dentofacial Orthop 2003;123:10-4 https://doi.org/10.1067/mod.2003.47
  19. Pascotto RC, Navarro MF, Capelozza Filho L, Cury JA. In vivo effect of a resin modified glass ionomer cement on enamel demineralization around orthodontic bracket. Am J Orthod Dentofacial Orthop 2004;125:36-41 https://doi.org/10.1016/S0889-5406(03)00571-7
  20. van Oss CJ, Good RJ, Chaudhury MK. Additive and nonadditive surface tension components and the interpretation of contact angle. Langmuir 1988;4:884-91 https://doi.org/10.1021/la00082a018
  21. Lie T. Early dental plaque morphogenesis. A scannning electron microscope study using the hydroxyapatite splint model and a low-sucrose diet. Journal of Periodontal Research 1977;12:73-89 https://doi.org/10.1111/j.1600-0765.1977.tb00111.x
  22. van Dijken JWV, van Sjostrom S, Wing K. The effect of different types of composite resin fillings on marginal gingiva. J Clin Periodontol 1987;14:185-9 https://doi.org/10.1111/j.1600-051X.1987.tb00965.x
  23. Einwag J, Ulrich A, Gehring F. In-vitro Plaqueanlagerung an unterschiedliche Fullungsmaterialien. Oralprophylaxe 12, 22-7
  24. Absolom DR, Lamberti FV, Policova Z, Zingg W, van Oss CJ, Neumann AW. Surface thenmodynamics of bacterial adhesion. Applied and Environmental Microbiology 1983;46, 90-7
  25. Van Pelt AWJ, Van der Mei HC, Busscher HJ, Arends J, Weekeramp AH. Surface free energies of oral streptococci. FEMS Microbiology Letters 1984;25:279-282 https://doi.org/10.1111/j.1574-6968.1984.tb01472.x
  26. O'kane C, Oliver RG, Blunden RE. Surface roughness and droplet contact angle measurements of various orthodontic bonding cements. Br J Orthod 1993;20:297-305 https://doi.org/10.1179/bjo.20.4.297
  27. Bollen CM, Papaioanno W, van Eldere J, Schepers E, Quirynen M, van Steenberghe D. The influence of abutment surface roughness on plaque accumulation and peri-implant mucositis. Clin Oral Impl Res 1996;7:201-11 https://doi.org/10.1034/j.1600-0501.1996.070302.x
  28. Della Volpe C, Sibini S. Acid-base surface free energies of solids and the definition of scales in the Good-van Oss-Chaudhury theory. J Adhes Sci Technol 2000;14:235-72 https://doi.org/10.1163/156856100742546
  29. Briandet R, Herry JM, Bellon-Fontaine MN. Determination of the van der Waals, electron doner and electron acceptor surface tension components of static Gram-positive microbial biofilms. Colloids and Surfaces B Biointerfaces 2001;21:299-31 https://doi.org/10.1016/S0927-7765(00)00213-7
  30. Forss H, Seppa L, Alakuijala P. Plaque accumulation on glass ionomer filling materials. Proc Finn Dent Soc 1991;87:343-50
  31. Weerkamp AH, Uyen HM, Busscher HJ. Effect of zeta potential and surface energy on bacterial adhesion to un coated and saliva-coated human enamel and dentin. J Dental Res 1988;67:1483-7 https://doi.org/10.1177/00220345880670120801
  32. Pratt-Terpstra IH, Weerkamp AH, Busscher HJ, The effects of pellicle formation on streptococcal adhesion to human enamel and artificial substrata with various surface free energies. J Dental Res 1989;68:463-7 https://doi.org/10.1177/00220345890680030501
  33. Tanner J, Vallittu PK, Soderling E. Adherence of streptococcus mutans to an E-glass fiber-reinforced composite and conventional restorative materials used in prosthetic dentistry, J Biomed Mater Res 2000;49:250-6 https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<250::AID-JBM14>3.0.CO;2-F
  34. Sipahi C, Anil N, Bayramli E. The effect of acquired salivary pellicle on the surface free energy and wettability of different denture base materials. J Dent 2001;29:197-204 https://doi.org/10.1016/S0300-5712(01)00011-2
  35. Quirynen M, van Steenberghe D. Is early plaque growth rate constant with time? Journal of Clinical Periodontology 1989;16:278-83 https://doi.org/10.1111/j.1600-051X.1989.tb01655.x
  36. Absolom DR, Zingg W, Neumann A. Protein adsorption to polymer particles: role of surface properties. J Biomed Mater Res 1987;21:161-71 https://doi.org/10.1002/jbm.820210202
  37. Sonju T, Grantz PO. Chemical composition of salivary integuments formed in vivo on solids with some established surface characteristics. Arch Oral Biol 1975;20:687-91 https://doi.org/10.1016/0003-9969(75)90138-7