IL-2-enhanced NK Cell Cytotoxicity is Regulated by Adiponectin from Hypothalamo-pituitary-adrenal Axis

Adiponectin에 의한 IL-2 증가 자연살해세포 독성의 조절

  • Kim, Keun-Young (Department of Life Science, Sookmyung Women's University) ;
  • Yang, Young (Department of Life Science, Sookmyung Women's University)
  • 김근영 (숙명여자대학교 이과대학 생명과학과 분자세포 생물학실험실) ;
  • 양영 (숙명여자대학교 이과대학 생명과학과 분자세포 생물학실험실)
  • Published : 2006.03.30

Abstract

Background: The Hypothalamo-Pituitary-Adrenal (HPA) axis is an important regulator for the body's stress response. As a primary stress responsive system, HPA-axis secretes various neurotransmitters, hormones, and cytokines, which regulates the immune system. Natural killer (NK) cell which is plays an important role in the innate immune response, is specially decreased their numbers and loose cytolytic activity in response to stress. However, the effect of HPA-axis secreted proteins on NK cell activity has not been defined. Herein, we studied the effect of adrenal secreted adiponectin on NK cell cytotoxicity. Adiponectin which is well-known metabolic control protein, plays important roles in various diseases, including hypertension, cardiovascular diseases, inflammatory disorders, and cancer. Methods: Signal sequence trap was used to find stress novel secretory protein from HP A-axis. Selected adiponectin was treated mouse mature primary NK cells and then examined the effect of adiponectin to NK cell cytotoxicity and cytokine expression level. Results: We found that adiponectin which is secreted from adrenal gland, suppress IL-2 induced NK cell cytotoxicity. And also investigated cytolytic cytokines are suppressed by adiponectin. Conclusion: These data suggest that adiponectin inhibites NK cell cytotoxicity via suppression of cytotoxicity related target gene.

Keywords

References

  1. Hamerman JA, Ogasawara K, Lanier LL: NK cells in innate immunity. Curr Opin Immunol 17;29-35, 2005 https://doi.org/10.1016/j.coi.2004.11.001
  2. Shibasaki T, Hotta M, Sugihara H, Wakabayashi I: Brain vasopressin is involved in stress-induced suppression of immune function in the rat. Brain Res 808;84-92, 1998 https://doi.org/10.1016/S0006-8993(98)00843-9
  3. Pedersen WA, McCullers D, Culmsee C, Haughey NJ, Herman JP, Mattson MP: Corticotropin-releasing hormone protects neurons against insults relevant to the pathogenesis of Alzheimer'disease. Neurobiol Dis 8;492-503, 2001 https://doi.org/10.1006/nbdi.2001.0395
  4. Roe SY, McGowan EM, Rothwell NJ: Evidence for the involvement of corticotrophin-releasing hormone in the pathogenesis of traumtic brain injury. Eur J Neurosci 10;553-559, 1998 https://doi.org/10.1046/j.1460-9568.1998.00064.x
  5. Aguilera G, Rabadan-Diehl C, Nikodemova M: Regulation of pituitary corticotropin releasing hormone receptors. Peptides 22; 769-774, 2001 https://doi.org/10.1016/S0196-9781(01)00390-4
  6. Sennello JA, Fayad R, Morris AM, Eckel RH, Asilmaz E, Montez J, Friedman JM, Dinarello CA, Fantuzzi G: Regulation of T cell-mediated hepatic inflammation by adiponectin and leptin. Endocrinology 146;2157-2164, 2005 https://doi.org/10.1210/en.2004-1572
  7. Fruhbeck G, Gomez-Ambrosi J, Muruzabal FJ, Burrell MA: The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiological Endocrinol Metab 280;E827-E847, 2001
  8. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8;1288-1295, 2002 https://doi.org/10.1038/nm788
  9. Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, Hotta K, Muraguchi M, Ohmoto Y, Yamashita S, Funahashi T, Matsuzawa Y: Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103; 1057-1063, 2001 https://doi.org/10.1161/01.CIR.103.8.1057
  10. Russell JH, Ley TJ: Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 20;323-370, 2002 https://doi.org/10.1146/annurev.immunol.20.100201.131730
  11. Najib S, Sanchez-Margalet V: Human leptin promotes survival of human circulating blood monocytes prone to apoptosis by activation of p42/44 MAPK pathway. Cell. Immunol 220;143- 149, 2002 https://doi.org/10.1016/S0008-8749(03)00027-3
  12. Dielen FM van, Veer C van't, Schols AM, Soeters PB, Buurman WA, Greve JW: Increased leptin concentrations correlate with increased concentrations of inflammatory markers in morbidly obese individuals. Int J Obes Relat Metab Disord 25;1759- 1766, 2001 https://doi.org/10.1038/sj.ijo.0801825
  13. Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, Matsuzawa Y: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun 257;79-83, 1999 https://doi.org/10.1006/bbrc.1999.0255
  14. Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 8;1288- 1295, 2002 https://doi.org/10.1038/nm788
  15. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, Tomiyama Y, Matsuzawa Y: Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96;1723-1732, 2000
  16. Ouchi N, Kihara S, Arita Y, Okamoto Y, Maeda K, Kuriyama H, Hotta K, Nishida M, Takahashi M, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Funahashi T, Matsuzawa Y: Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102;1296-1301, 2000 https://doi.org/10.1161/01.CIR.102.11.1296
  17. Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, Maeda K, Nagaretani H, Kishida K, Maeda N, Nagasawa A, Funahashi T, Matsuzawa Y: Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation 109;2046-2049, 2004 https://doi.org/10.1161/01.CIR.0000127953.98131.ED
  18. Cacicedo JM, Yagihashi N, Keaney JF Jr, Ruderman NB, Ido Y: AMPK inhibits fatty acid-induced increases in NF-kappaB transactivation in cultured human umbilical vein endothelial cells. Biochem. Biophys Res Commun 324;1204-1209, 2004 https://doi.org/10.1016/j.bbrc.2004.09.177
  19. Jyothi MD, Khar A: Interleukin-2-induced nitric oxide synthase and nuclear factor-kappaB activity in activated natural killer cells and the production of interferon-gamma. Scand J Immunol 52;148-155, 2000 https://doi.org/10.1046/j.1365-3083.2000.00762.x
  20. Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar-Mather TP: Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol 17;189-220, 1999 https://doi.org/10.1146/annurev.immunol.17.1.189
  21. Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L: 2002. What is a natural killer cell? Nat Immunol 3;6-8, 1999 https://doi.org/10.1038/ni0102-6
  22. Seaman WE: Natural killer cells and natural killer T cells. Arthritis Rheum 43;1204-1217, 2000 https://doi.org/10.1002/1529-0131(200006)43:6<1204::AID-ANR3>3.0.CO;2-I
  23. Yaqoob P, Newsholme EA, Calder PC: 1994. Inhibition of natural killer cell activity by dietary lipids. Immunol Lett 41; 241-247, 2000 https://doi.org/10.1016/0165-2478(94)90140-6
  24. Rasmussen LB, Kiens B, Pedersen BK, Richter EA: Effect of diet and plasma fatty acid composition on immune status in elderly men. Am J Clin Nutr 59;572-577, 1994 https://doi.org/10.1093/ajcn/59.3.572
  25. Yin W, Mu J, Birnbaum MJ: Role of AMP-activated protein kinase in cyclic AMP-dependent lipolysis In 3T3-L1 adipocytes. J Biol Chem 278;43074-43080, 2003 https://doi.org/10.1074/jbc.M308484200
  26. Wulster-Radcliffe MC, Ajuwon KM, Wang J, Christian JA, Spurlock ME: Adiponectin differentially regulates cytokines in porcine macrophages. Biochem Biophys Res Commun 316; 924-929, 2004 https://doi.org/10.1016/j.bbrc.2004.02.130
  27. Tian Z, Sun R, Wei H, Gao B: Impaired natural killer (NK) cell activity in leptin receptor deficient mice: leptin as a critical regulator in NK cell development and activation. Biochem Biophys Res Commun 298;297-302, 2002 https://doi.org/10.1016/S0006-291X(02)02462-2
  28. Pickup JC, Crook MA: Is type II diabetes mellitus a disease of the innate immune system? Diabetologia 41; 1241-1248, 1998 https://doi.org/10.1007/s001250051058
  29. Visser M, Bouter LM, McQuillan GM, Wener MH, Harris TB: Elevated C-reactive protein levels in overweight and obese adults. Jama 282;2131-2135, 1999 https://doi.org/10.1001/jama.282.22.2131
  30. Lindsay RS, Krakoff J, Hanson RL, Bennett PH, Knowler WC: Gamma globulin levels predict type 2 diabetes in the Pima Indian population. Diabetes 50;1598-1603, 2001 https://doi.org/10.2337/diabetes.50.7.1598
  31. Bouloumie A, Curat CA, Sengenes C, Lolmede K, Miranville A, Busse R: Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care 8; 347-354, 2005 https://doi.org/10.1097/01.mco.0000172571.41149.52
  32. Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbeli NK M, Andre M, Casteilla L, Penicaud L: Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett 579;3487-3492, 2005 https://doi.org/10.1016/j.febslet.2005.05.031