참고문헌
- Solursh M: Differentiation of cartilage and bone. Curr OpinCell Biol 1;989-994, 1989 https://doi.org/10.1016/0955-0674(89)90070-7
- Sandell LJ, Adler P: Developmental patterns of cartilage. Front Biosci 4;731-742, 1999 https://doi.org/10.2741/Sandell
- Hauselman HJ, Fernandes RJ, Mok SS, Schmid TM, Block JA, Aydelotte MB, Kuettner KE, Thonar JMA: Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci 107;17-27, 1994
- Reginato AM, Iozzo RV, Jimenez SA: Formation of nodular structures resembling mature articular cartilage in long-term primary cultures of human fetal epiphyseal chondrocytes on a hydrogel substrate. Arthritis Rheum 37;1338-1349, 1994 https://doi.org/10.1002/art.1780370912
- Archer CW, McDowell J, Baileys MT, Stephens MD, Bentley G: Phenotypic modulation in sub-populations of human articular chondrocytes in vitro. J Cell Sci 97;361-371, 1990
- Sandell LJ, Aigner I: Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3;107-113, 2001 https://doi.org/10.1186/ar148
- Amin AR, Abramson SB: The role of nitric oxide in articular cartilage breakdown in osteoarthritis. Curr Opin Rheumatol 10;263-268, 1998 https://doi.org/10.1097/00002281-199805000-00018
- Amin AR, Attur M, Abramson SB: Nitric oxide synthase and cyclooxygenases: distribution regulation and intervention in arthritis. Curr Opin Rheumatol 11;202-209, 1999 https://doi.org/10.1097/00002281-199905000-00009
- Arbramson SB, Attur M, Amin AR, Clancy R: Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr Rheumatol Rep 3;535-541, 2001 https://doi.org/10.1007/s11926-001-0069-3
- Kim SJ, Ju JW, Oh CD, Yoon YM, Song WK, Kim JH, Yoo YJ, Bang OS, Kang SS, Chun JS: ERK-1/2 and p38 kinase oppositely regulate nitric oxide-induced apoptosis of chondrocytes in association with p53, caspase-3, and differentiation status. J Biol Chem 277;1332-1339, 2002 https://doi.org/10.1074/jbc.M107231200
- Kim SJ, Chun JS: Protein kinase C-alpha and -zeta regulate nitric-oxide-induced NF-kappa B activation that mediates dedifferentiation in articular chondrocytes. Biochem Biophys Res Commun 303;206-211, 2003 https://doi.org/10.1016/S0006-291X(03)00305-X
- Li S, Okamoto T, Chun M, Sagicomo M, Casanova JE, Hansen SH, Nishimoto I, Lisnti MP: Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270;15693-15701, 1995 https://doi.org/10.1074/jbc.270.26.15693
- Li S, Couet J, Lisanti MP: Src tyrosine kinases, G-alpha subunits, and H-Ras shear a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 271;29182-29190, 1996 https://doi.org/10.1074/jbc.271.46.29182
- Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP: Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271;9690-9697, 1996 https://doi.org/10.1074/jbc.271.16.9690
- Michel JB, Feron O, Sase K, Prabhakar P, Michel T: Caveolin versus calmodulin. Counterbalancing allosteric modulators of endothelial nitric oxide synthase. J Biol Chem 272;25907- 25912, 1997 https://doi.org/10.1074/jbc.272.41.25907
- Okamoto T, Schlegel A, Scherer PE, Lisanti MP: Caveolin, a family of scaffolding proteins for organizing 'preassembled signaling complexes'at the plasma membrane. J Biol Chem 273;5419-5422, 1998 https://doi.org/10.1074/jbc.273.10.5419
- Glenny JR, Zokas L: Novel tyrosine kinase substrates from Rous sarcoma virus-transformed cells are present in the membrane skeleton. J Cell Biol 108;2401-2408, 1989 https://doi.org/10.1083/jcb.108.6.2401
- Volonte D, Galbiati F, Pestell RG, Lisanti MP: Cellular stress induces the tyrosine phosphorylation of caveolin-1 [Tyr(14)] via activation of p38 mitogen-activated protein kinase and c-Src kinase. Evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J Biol Chem 276;8094-8103, 2001 https://doi.org/10.1074/jbc.M009245200
- Oh, CD, Chang SH, Yoon YM, Lee SJ, Lee YS, Kang SS, Chun JS: Opposing role of mitogen-activated protein kinase subtypes, Erk-1/-2 and p38, in the regulation of chondrogenesis of mesenchymes. J Biol Chem 275;5613-5619, 2000 https://doi.org/10.1074/jbc.275.8.5613
- Koon YM, Kim SJ, Oh CD, Ju JW, Song WK, Yoo YJ, Huh TL, Chun JS: Maintenance of differentiated phenotype of articular chondrocytes by protein kinase C and extracellular signal-regulated protein kinase. J Biol Chem 277;8412-8420, 2002 https://doi.org/10.1074/jbc.M110608200
- Kim SJ, Hwang SG, Kim IC, Chun JS: Actin cytoskeletal architecture regulates nitric-oxide-induced apoptosis, dedifferentiation, and cyclooxygenase-2 exprssion in articular chondrocytes via mitogen-activated protein kinase and protei nkinase C pathways. J Biol Chem 278;42448-42456, 2003 https://doi.org/10.1074/jbc.M304887200
- Mastick CC, Brady MJ, Saltiel AR: Insulin stimulates the tyrosine phosphorylation of caveolin. J Cell Biol 129;1523-1531, 1995 https://doi.org/10.1083/jcb.129.6.1523
- Mastick CC, Saltiel AR: Insulin-stimulated tyrosine phosphorylation of caveolin is specific for the differentiated adipocyte phenotype in 3T3-L1 cells. J Biol Chem 272;20706-20714, 1997 https://doi.org/10.1074/jbc.272.33.20706
- Ushio-Fukai M, Hilenski L, Santanam N, Becker P, Ma Y, Griendling K, Alexander R: Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterolrich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276;48269-48275, 2001 https://doi.org/10.1074/jbc.M105901200
- Oh P, Schnitzer JE: Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12;685-698, 2001 https://doi.org/10.1091/mbc.12.3.685
- Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC: Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93;6448-6453, 1996
- Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T: Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271;22810-22814, 1996 https://doi.org/10.1074/jbc.271.37.22810
- Liu P, Ying Y, Ko YG, Anderson RG: Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J Biol Chem 271;10299-10303, 1996 https://doi.org/10.1074/jbc.271.17.10299
- Glenny JR Jr: Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264;20163-20166, 1989
- Ko YG, Liu P, Pathak RK, Craig LC, Anderson RGW: Early effects of pp60(v-src) kinase activation on caveolae. J Cell Biochem 71;524-535, 1998 https://doi.org/10.1002/(SICI)1097-4644(19981215)71:4<524::AID-JCB7>3.0.CO;2-B
- Nomura R, Fujimoto T: Tyrosine-phosphorylated caveolin-1: immunolocalization and molecular characterization. Mol Biol Cell 10;975-986, 1999 https://doi.org/10.1091/mbc.10.4.975
- Corley Mastick C, Sanguinetti AR, Knesek JH, Mastick GS, Newcomb LF: Caveolin-1 and a 29-kDa caveolin-associated protein are phosphorylated on tyrosine in cells expressing a temperature-sensitive v-Abl kinase. Exp Cell Res 266;142-154, 2001 https://doi.org/10.1006/excr.2001.5205
- Kim SJ, Kim HG, Oh CD, Hwang SG, Song WK, Yoo YJ, Kang SS, Chun JS: p38 kinase-dependent and -independent inhibition of protein kinase C zeta and alpha regulates nitricoxide- induced apoptosis and dedifferentiation of articular chondrocytes. J Biol Chem 277;30375-30381, 2002 https://doi.org/10.1074/jbc.M205193200