References
- T. Abraham, Knowledge Discovery in SpatioTemporal Databases, School of Computer and Information Science, University of South Australia, Ph. D dissertation, 1999
- Lee Y.J., Data Mining Technique for Discovering Temporal Relation Rules, Department of computer science, chungbuk national university of korea, Ph. D dissertation, 2001
- Jeong J.D., Paek O.H., Lee J.W., and and Ryu K.H., 'Temporal Pattern Mining of Moving Object for Location-Based Service', In Proc. of International Conference on Database and Expert Systems Applications (Dexa2002), (LNCS2453), 2002
- K. Koperski, J. Han, and J. Adhikary, 'Mining knowledge in geographical data', to appear in Communications of the ACM, 1998
- J. Mennis, and D.J. Peuquet, 'A Conceptual Framework for Incorporating Cognitive Principles into Geographical Database presentation', International Journal of Geographical Information Science, Vol. 14, No. 6, pp. 501-520, 2000 https://doi.org/10.1080/136588100415710
- Lee J.W., Spatiotemporal Moving Pattern Discovery Technique based on Knowledge Discovery Framework, Department of computer science, chungbuk national university of korea, Ph. D dissertation, 2003
- J.F. Roddick and M. Spiliopoulou, 'Temporal data mining: survey and issues', Research Report ACRC-99-007, University of South Australia, 1999
- S.A. Sarabjot, D.A. Bell, and J.G. Hughes, 'The role of domain knowledge in data mining', In Proc. of the Int. Conf. on Information and Knowledge Management, pp. 37-43,1995
- Tsoukatos and D. Gunopulos, 'Efficient Mining of Spatiotemporal Patterns', In Proc. of the 7th Int. Symp. on Spatial and Temporal Databases (SSTD), 2001
- E. Mesrobian, R.R. Muntz, J.R. Santos, E.C. Shek, C.R. Mechoso, J.D. Farrara, and P. Stolorz, 'Extracting Spatio-Temporal Patterns from Geoscience Datasets', IEEE Workshop on Visualization and Machine Vision, Seattle, WA, June, 1994
- E. Mesrobian, R.R. Muntz, E.C. Shek, J.R. Santos, J. Yi, K. Ng, S.Y. Chien, C.R. Mechoso, J.D. Farrara, P. Stolorz, and H. Nakamura, 'Exploratory Data Mining and Analysis Using Conquest', IEEE Pacific Rim Conference on Communications, Computers, Visualization, and Signal Processing, May, 1995
- R.T. Ng and J. Han, 'Efficient and Effective Clustering Method for Spatial Data Mining', In Proc. of International Conference of Very Large Data Bases, pp. 144-155, 1994
- R.T. Ng, 'Spatial Data Mining: Discovering Knowledge of Clusters from Maps', In Proc. of ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, 1996
- R.E. Valdes-Perez, 'Systematic Detection of Subtle Spatio-Temporal Patterns in Time-Lapse Imaging. I. Mitosis', Bioimaging. Vol. 4 , No. 4, pp. 232-242, 1998 https://doi.org/10.1002/1361-6374(199612)4:4<232::AID-BIO2>3.0.CO;2-L
- J.F. Roddick and B.G. Lees, 'Paradigms for Spatial and Spatio-Temporal Data Mining', Geographic Data Mining and Knowledge Discovery. Taylor and Francis. Research Monographs in Geographic Information Systems. Miller, H. and Han, J., Eds, 2001
Cited by
- A spatiotemporal mining framework for abnormal association patterns in marine environments with a time series of remote sensing images vol.38, 2015, https://doi.org/10.1016/j.jag.2014.12.009
- A Remote-Sensing-Driven System for Mining Marine Spatiotemporal Association Patterns vol.7, pp.7, 2015, https://doi.org/10.3390/rs70709149