Anti-Cariogenicity of 2-Hydroxyethyl ${\beta}$-Undecenate from Cumin (Cuminum cymium L.) Seed

  • Ryu, Il-Hwan (College of Life Science and Natural Resources, Wonkwang University) ;
  • Kang, Enn-Ju (Department of Dental Hygienic, Wonkwang Health Science Collage) ;
  • Lee, Kap-Sang (College of Life Science and Natural Resources, Wonkwang University)
  • Published : 2006.08.30

Abstract

This study was to assess the antimicrobial action of 2-hydroxyethyl ${\beta}$-undecenate purified from cumin (Cuminum cymium L.) seed against the oral anaerobe, Streptococcus mutans, which is associated with gingivitis, specifically focusing on the catabolic effect. 2-Hydroxyethyl ${\beta}$-undecenate inhibited the acid production and growth of S. mutans after 30 hr incubation at 50 mM. The glycolysis of S. mutans with glucose as substrate was similarly sensitive to 2-hydroxyethyl ${\beta}$-undecenate, with 70% inhibition of glucose utilization at 5 mM and 90% inhibition at 50 mM. In addition, this substance potently inhibited the glycolysis enzyme, glyceraldehyde-3-phosphate dehydrogenase (GADP); the phosphoenolpyruvate, glucose phosphotransferase (Glucose-PTS); and membrane ATPase, in a concentration dependent manner. The $IC_{50}$ values for inhibition of GADP, Glucose-PTS, and ATPase were 1, 0.9, and 5 mM, respectively. Furthermore, 2-hydroxyethyl ${\beta}$-undecenate inhibited teeth calcium ion elution by 80% at 50 mM. These results suggest that 2-hydroxyethyl ${\beta}$-undecenate is a potent inhibitor of carbohydrate metabolism and the growth of S. mutans JC-2.

Keywords

References

  1. Lee SS, Park JM. Oral Microbiology. Chung-Ku Publishing Co., Seoul, Korea. p. 249 (1994)
  2. Hardie JM. Oral Microbiology; current concepts in the microbiology of dental caries and periodental disease. Brit. Dent. J. 172: 271-278 (1992) https://doi.org/10.1038/sj.bdj.4807849
  3. Tanzer TM, Livingston J, Thompson AM. The microbiology of primary dental caries in humans. J. Dent. Edu. 65: 1028-1037 (2001)
  4. Merritt J, Kreth F, Qi F, Sullivan R, Shi W. Non-disruptive, realtime analyses of the metabolic atatus and biability of Streptococcus mutans cell in response to antimicrobial treatment. J. Microbiol. Meth. 61: 161-170 (2005) https://doi.org/10.1016/j.mimet.2004.11.012
  5. Masaki H, Nihei K, Kubo I. Hydroquinone, a control agent of agglutination and adherence of Streptococcus mutans induced by sucrose. Bioorgan. Med. Chem. 12: 921-925 (2004) https://doi.org/10.1016/j.bmc.2003.12.020
  6. Hamada S, Koga T, Shima T. Viruience factor of Streptococcus mutans and dental caries prevention. J. Dent. Res. 63: 407-411 (1984) https://doi.org/10.1177/00220345840630031001
  7. Oh S, Lee JH, Kim GT, Shin JG, Beak YJ. Anticariogenic activity of a bacteriocin produced by Lactococcus sp. Hy449. Food Sci. Biotechnol. 12: 9-12 (2003)
  8. Limsong J, Benjavongklchai E, Kuvatanasachati J. Inhibitory effect of some herbal extracts on adherence of Streptococcus mutans. J. Ethnopharmacol. 92: 281-289 (2004) https://doi.org/10.1016/j.jep.2004.03.008
  9. Hwang Jk, Chung JY, Back NI, Park JH. Isopanduratin A from Kaempferia pandurata as an active antibacterial agent against cariogenic Streptococcus mutans. Int. J. Antimicrob. Ag. 23: 377-381 (2004) https://doi.org/10.1016/j.ijantimicag.2003.08.011
  10. Yatsuda R, Rosalen PL, Cury JA, Murata RM, Rehder VLG, Melo LV, Koo H. Effect of Mikania genus plans on growth and cell adherence of mutans streptococci. J. Ethnopharmacol. 97: 183-189 (2005) https://doi.org/10.1016/j.jep.2004.09.042
  11. Kang EJ, Ryu IH, Lee KS. Purification and properties of HPS (halitosis prevention substance) isolated from Cumin (Cuminum cyminum L.) seed. Food Sci. Biotechnol. 14: 621-627 (2005)
  12. Park UY, Change DS, Cho HR. Screening of antimicrobial activity for medicinal herb extract. J. Korean Soc. Food Sci. Nutr. 21: 91-96 (1992)
  13. Ryu IH, Kim SS, Lee KS. Anti-cariogenicity of NCS (non-cariogenicity sugar) produced by alkalophilic Bacillus sp. S-1013. J. Microbiol. Biotechnol. 14: 759-765 (2004)
  14. Sheng J, Nguyen PT, Marquis RE. Multi-target antimicrobial actions of zinc against oral anaerobes. Arch. Oral Biol. 50: 747-757 (2005) https://doi.org/10.1016/j.archoralbio.2005.01.003
  15. Crow VL, Wittenberger CL. Separation and properties of NAD+ and NAPD+-dependent glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. J. Biol. Chem. 254: 1134-1142 (1979)
  16. Dills SS, Seno S. Regulation of hexitol catabolism in Streptococcus mutans. J. Bacteriol. 153: 861-866 (1983)
  17. Hamilton IR, Lo GCY. Co-inducing of ${\beta}$-galactosidase and the lactose-P-enolpyruvate phospotransferase system Streptococcus salivarius and Streptococcus mutans. J. Bacteriol. 136: 900-908 (1978)
  18. Slee AM, Tanzer JM. Effect of growth conditions on sucrose phosphoro-transferase activity of Streptococcus mutans. Infect. Immun. 27: 922-927 (1980)
  19. Cochu A, Vadeboncoeur C, Moineau S, Frenett M. Genetic and biochemical characterization of the phosphoenolpyruvate: glucose/mannose phosphotransferase system of Streptococcus thermophilus. Appl. Environ. Microbiol. 69: 5423-5432 (2003) https://doi.org/10.1128/AEM.69.9.5423-5432.2003
  20. Liberman ES, Bleiweis AS. Glucose phosphoenolpyruvate-dependent phosphor transferase system of Streptococcus mutans G85 studied using cell-free extracts. Infect. Immun. 44: 486-492 (1984)
  21. Bender GR, Sutton SVW, Marquis RE. Acid tolerance, proton permeability, and membrane ATPases of oral streptococci. Infect. Immun. 53: 331-338 (1986)
  22. Kakinuma Y. Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci. Microbiol. Mol. Biol. R. 62: 1021-1045 (2003)
  23. Heinonen SK, Lathi RJ. A new and convenient colorimetric determination of in organic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 113: 313-317 (1981) https://doi.org/10.1016/0003-2697(81)90082-8
  24. Koo H, Rosalen PL, Cury JA, Park YK, Bowen WH. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyl transferase activity. Antimicrob. Agents Ch. 46: 1302-1309 (2002) https://doi.org/10.1128/AAC.46.5.1302-1309.2002
  25. Neta T, Takada K, Hirasawa M. Low-cariogenicity of trehalose as a substrate. J. Dent. 28: 571-576 (2000) https://doi.org/10.1016/S0300-5712(00)00038-5
  26. Ooshima T, Izumitani A, Minami T. Noncariogenicity of maltitol in specific pathogen-free rat infected with mutans Streptococci. Cardiovasc. Res. 26: 33-37 (1992)
  27. Bar A. Caries prevention with xylitol. World Rev. Nutr. Diet. 55: 183-209 (1988)
  28. Radcliff CE, Lamb R, Blinkborn AS, Drucker DB. Effect of sodium nitrite and ascorbic acid on the growth and acid production of Streptococcus mutans. J. Dent. 31: 367-370 (2003) https://doi.org/10.1016/S0300-5712(03)00066-6
  29. De Groote MA, Fang FC. NO inhibitors; antimicrobial properties of nitric oxide. Clin. Infect. Dis. 21: 162-165 (1995) https://doi.org/10.1093/clinids/21.1.162
  30. Lanford RE, Estlack L, White AL. Neomycin inhibits secretion of apolipoprotein by increasing retention on the hepatocyte cell surface. J. Lipid Res. 37: 2055-2064 (1996)
  31. Bard M, Albrecht N, Gupta C, Guynn CJ, Stillwell W. Geraniol interferes with membrane function in strain of Candida and Saccharomyces. Lipid 23: 534-538 (1988) https://doi.org/10.1007/BF02535593
  32. Imokawa A, Kumi J, Higaki Y. Decreased level of ceramides in stratum of atopic dermatitis; an etoilgoic factor in atopic dry skin. J. Invest. Dermatol. 96: 523-530 (1991) https://doi.org/10.1111/1523-1747.ep12470233
  33. Reizer J, Peterkofsky A. Regulatory mechanisms for sugar transport in Gram-positive bacteria. pp. 333-364. In: Sugar Transport and Metabolism of Gram Positive Bacteria. Reezer J, Peterkofsky A (eds). Ellis Horwood, New York, NY, USA (1987)
  34. Yamada T. Regulation of glycolysis in streptococci. pp. 67-93. In: Sugar Transport and Metabolism of Gram Positive Bacteria. Reezer J, Peterkofsky A (eds). Ellis Horwood, New York, NY, USA (1987)
  35. Ryan CS, Kleinberg I. A comparative study of glucose and galactose uptake in pure cultures of human oral bacteria, salivary sediment and dental plaque. Arch. Oral Biol. 40: 743-752 (1995) https://doi.org/10.1016/0003-9969(95)00028-N
  36. de Marchi AA, Castilho MS, Nasciminto PGB, Archanjo FC, Ponte GD, Oliva G, Pupo T. New 3-piperonylcoumarins as inhibitors of glycosomal glycelaldehyde-3-phosphate dehydrogenase (gGAPDH) from Tuypanosoma cruzi. Bioorgan. Med. Chem. 12: 4823-4833 (2004) https://doi.org/10.1016/j.bmc.2004.07.018
  37. Kennedy KJ, Bressi TC, Gelb MH. A disubstitute NAD+ analogue is a nanomolar inhibitor of trypanosomal glyceraldehyde-3-phosphate dehydrogenase. Bioorg. Med. Chem. Lett. 11: 95-98 (2001) https://doi.org/10.1016/S0960-894X(00)00608-9
  38. Brow AT, Wittenberger CL. Mannitol and sorbitol catabolism in Streptococcus mutans. Arch. Oral Biol. 18: 117-126 (1973) https://doi.org/10.1016/0003-9969(73)90026-5
  39. Maryanski JH, Wittenberger CL. Mannitol transport in Streptococcus mutans. J. Baeteriol. 124: 1475-1481 (1975)
  40. Liberman ES, Bleiweis AS. Glucose phosphoenolpyruvate-dependent phosphor-transferase system of Streptococcus mutans GS5 studied by using cell-free extracts. Infect. Immun. 44: 486-492 (1984)
  41. Dills SS, Seno S. Regulation of hexitol catabolism in Streptococcus mutans. J. Bacteriol. 153: 861-866 (1983)
  42. Ellwood DC, Phipps PJ, Hamilton IR. Effect of growth rate and glucose concentration on the activity of the phosphoenal pyruvate phosphotransferase system in Streptococcus mutans grown in continuous culture. Infect. Immun. 23: 224-231 (1979)
  43. Liberman ES, Bleiweis AS. Transport of glucose and mannose by common phosphoenolpyruvate-dependent phosphotransferase system in Streptococcus mutans GS5. Infect. Immun. 42: 1106-1109 (1984)
  44. Belli WA, Marquis RE. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl. Environ. Micorbiol. 57: 1134-1138 (1991)
  45. Kobayashi H. Computer simulation of cytoplasmic pH regulation mediated by the F-type H+-ATPase. Biochim. Biophys. Acta 1607: 211-216 (2003) https://doi.org/10.1016/j.bbabio.2003.10.001
  46. Eisenberg AD, Marquis RE. Enhanced transmembrane proton conductance in Strepococcus mutans GS-5 due to ionophores and fluoride. Antimicrob. Agents Ch. 19: 807-812 (1981) https://doi.org/10.1128/AAC.19.5.807
  47. Magalhaes PP, Paulino TP, Thedei JRG, Larson RE, Ciancaglini P. A 100 kDa vanadate and lanzoprazole-sensitive ATPase from Streptococcus mutans membrane. Arch. Oral Biol. 48: 815-824 (2003) https://doi.org/10.1016/S0003-9969(03)00177-8
  48. Suzuki T, Tagami J, Hanada N. Role of F1F0-ATPase in the growth of Streptococcus mutans GS5. J. Appl. Microbiol. 88: 555-562 (2000) https://doi.org/10.1046/j.1365-2672.2000.00840.x