Clostridium botulinum and Its Control in Low-Acid Canned Foods

  • Reddy, N. Rukma (National Center for Food Safety and Technology / U.S. Food and Drug Administration) ;
  • Skinner, Guy E. (National Center for Food Safety and Technology / U.S. Food and Drug Administration) ;
  • Oh, Sang-Suk (Department of Food Science and Technology, Ewha Womans University)
  • Published : 2006.08.30

Abstract

Clostridium botulinum spores are widely distributed in nature. Type A and proteolytic type B bacteria produce heat-resistant spores that are primarily involved in most of the food-borne botulism outbreaks associated with low-acid canned foods. Food-borne botulism results from the consumption of food in which C. botulinum has grown and produced neurotoxin. Growth and toxin production of type A and proteolytic type B in canned foods can be prevented by the use of thermal sterilization alone or in combination with salt and nitrite. The hazardousness of C. botulinum in low-acid canned foods can also be reduced by preventing post-process contamination and introducing hazard analysis and critical control point (HACCP) practices during production. Effectiveness of non-thermal technologies such as high pressure processing with elevated process temperatures on inactivation of spores of C. botulinum will be discussed.

Keywords

References

  1. Van Ermengen E. About a new anaerobic Bacillus and its relation of Botulinum. Z. Hyg. Infektionskr. 26: 1-56 (1897) https://doi.org/10.1007/BF02220526
  2. Hauschild AHW. Clostridium botulinum. pp. 111-189. In: Foodborne Bacterial Pathogens, M.P. Doyle (ed). Marcel Dekker, Inc., New York, NY, USA (1989)
  3. Rhodehamel EJ, Reddy NR, Pierson MD. Botulism: the causative agent and its control in foods. Food Control 3: 125-143 (1992) https://doi.org/10.1016/0956-7135(92)90097-T
  4. Hauschild AHW, Dodds KL. Clostridium botulinum: Ecology and Control in Foods. Marcel Dekker, Inc., New York, NY, USA (1993)
  5. ICMSF (International Commission for Microbiological Safety of Foods). Microbiological Specifications of Food Pathogens. Vol. 5, pp. 66-111. In: Microorganisms in Foods. Blackie Academic and Professional, Chapman and Hall, New York, NY, USA (1996)
  6. Bell C, Kyriakides A. Clostridium botulinum: A Practical Approach to the Organism and Its Control in Foods. Blackwell Science, London, UK (2000)
  7. Lund BM, Peck MW. Clostridium botulinum, pp. 1057-1109. In: The Microbiological Safety and Quality of Food. Lund BM, Baird-Parker TC, Gould GW (eds). Aspen Publishers. Inc., Gaithersburg, MD, USA (2000)
  8. Peck MW. Clostridia and food-borne disease. Microbiol. Today 29: 9-12 (2002)
  9. Sonnabend OAR, Sonnabend WFF, Heinzle R, Sigrist T, Dirnhofer R, Krech U. Isolation of Clostridium botulinum type G and identification of type G botulinal toxin in humans: Report of five sudden unexpected deaths. J. Infect. Dis. 143: 22-27 (1981) https://doi.org/10.1093/infdis/143.1.22
  10. Sonnabend OAR, Sonnabend WFF, Krech U, Molz G, Sigrist T. Continuous microbiological and pathological study of 70 sudden and unexpected infant deaths: Toxigenic intestinal Clostridium botulinum infection in nine cases of sudden infant death syndrome. Lancet 1: 237-241 (1985)
  11. Hall JD, McCroskey LM, Pincomb BJ, Hatheway CL. Isolation of an organism resembling C. baratii which produces type F toxin from an infant with botulism. J. Clin. Microbiol. 21: 654-655 (1985)
  12. McCroskey LM, Hatheway CL, Fenicia L, Pasolini B, Aureli P. Characterization of an organism that produccs type E botulinal toxin which resembles Clostridium butyricum from the feces of an infant with type E botulism. J. Clin. Microbiol. 23: 201-202 (1986)
  13. Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL. Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J. Infect. Dis. 154: 207-211 (1986) https://doi.org/10.1093/infdis/154.2.207
  14. Suen JC, Hatheway CL, Steigerwalt AG, Brenner DJ. Genetic confirmation of identities of neurotoxigenic Clostridium baratii and Clostridium butyricum implicated as agents of infant botulism. J. Clin. Microbiol. 26: 2191-2192 (1988)
  15. Sakaguchi GB. Botulism. pp. 390-433. In: Food-borne Infections and Intoxications. Riemann H, Bryan FL (eds). Academic Press. New York, NY, USA (1979)
  16. Huss HH, Distribution of Clostridium botulinum. Appl. Environ. Microbiol. 39: 764-769 (1980)
  17. Lynt RK, Kautter DA, Solomon HM. Differences and similarities among proteolytic and nonproteolytic strains of Clostridium botulinum types A, B, E, and F: A review. J. Food Protect. 45: 466-474 (1982) https://doi.org/10.4315/0362-028X-45.5.466
  18. Lacy DB, Tepp W. Cohen AC, DasGupta BR, Stevens RC. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 5: 898-902 (1998) https://doi.org/10.1038/2338
  19. Simpson LL. Molecular pharmacology of botulinum toxin and tetanus toxin. Annu. Rev. Pharmacol. 26: 427-453 (1986) https://doi.org/10.1146/annurev.pa.26.040186.002235
  20. Shapiro RL, Hatheway CL, Swerdlow DL. Botulism in the United States: A clinical and epidemiologic review. Ann. Intern. Med. 129: 221-228 (1998) https://doi.org/10.7326/0003-4819-129-3-199808010-00011
  21. Arnon SS, Schechter R, Inglesby TV. Henderson DA, Barlett JG, Ascher MS, Eitzen E, Fine AD, Hauer J, Layton M, Lillibridge S, Osterholm MT, O'Toole T, Parker G, Perl TM, Russell PK, Swerdlow DL, Tonat K. Botulinum toxin as a biological weapon. J. Amer. Med. Assoc. 285: 1059-1070 (2001) https://doi.org/10.1001/jama.285.8.1059
  22. Bradshaw JG, Peeler JT, Twedt RM. Thermal inactivation of Clostridium botulinum toxin types A and B in buffer, beef, and mushroom patties. J. Food Sci. 46: 688-690, 696 (1979) https://doi.org/10.1111/j.1365-2621.1981.tb15325.x
  23. Hauschild AHW. Clostridium botulinum toxins. Int. J. Food Microbiol. 10: 113-124 (1990) https://doi.org/10.1016/0168-1605(90)90060-I
  24. Woodburn MJ, Somers E, Rodriguez J, Schantz EJ. Heat inactivation rates of botulinum toxins A, B, E, and F in some foods and buffers. J. Food Sci. 44: 1658-1661 (1979) https://doi.org/10.1111/j.1365-2621.1979.tb09110.x
  25. Pierson MD, Reddy NR. Clostridium botulinum. pp. 16-18. In: Bacteria Associated with Foodborne Diseases. A Scientific Status Summary. Institute of Food Technologists, Chicago, IL, USA (2004)
  26. Johnson EA. Clostridial toxins as therapeutic agents: Benefits of nature's most toxic proteins. Ann. Rev. Microbiol. 53: 551-575 (1999) https://doi.org/10.1146/annurev.micro.53.1.551
  27. Schantz EJ, Johnson EC. Properties and use of botulinum toxin and other microbial neurotoxins in medicine. Microbiol. Rev. 56: 80-99 (1992)
  28. Sperber WH. Requirements of Clostridium botulinum for growth and toxin production. Food Technol.-Chicago 36: 89-94 (1982)
  29. Odlaug TE, Pflug IJ. Clostridium botulinum and acid foods. J. Food Protect. 41: 566-573 (1978) https://doi.org/10.4315/0362-028X-41.7.566
  30. Aureli P, Di Cunto M, Maffei A, De Chiara G, Franciosa G, Accoriniti L, Gambardella AM, Greco D. An outbreak in Italy of botulism associated with a dessert made with mascarpone cream cheese. Eur. J. Epidemiol. 16: 913-918 (2000) https://doi.org/10.1023/A:1011002401014
  31. Kalluri P, Crowe C, Reller M, Gaul L, Hayslett J, Barth S, Eliasberg S, Ferreira J, Holt K, Bengston S, Hendricks K, Sobel J. An outbreak of foodborne botulism associated with food sold at a salvage store in Texas. Clin. Infect. Dis. 37: 1490-1495 (2003) https://doi.org/10.1086/379326
  32. Weber JT, Hibbs Jr, Darwish A, Mishu B, Corwin AL, Rakha M, Hatheway CL, El Sharkaway S, El Rahim SA, Al-Hamd MFS, Sam JE, Blake PA, Tauxe RV. A massive outbreak of type E botulism associated with traditional salted fish in Cairo. J. Infect. Dis. 167: 451-454 (1993) https://doi.org/10.1093/infdis/167.2.451
  33. O'Mahony M, Mitchell E, Gilbert RJ, Hutchinson DN, Begg NT, Rodhouse JC, Morris JE. An outbreak of foodborne botulism associated with contaminated hazelnut yogurt. Epidemiol. Infect. 104: 389-395 (1990) https://doi.org/10.1017/S0950268800047403
  34. Chaudhry R, Dhawan B, Kumar D, Bhatia R, Gandhi JC, Patel RK, Purohit BC. Outbreak of suspected Clostridium butyricum botulism in India. Emerg. Infect. Dis. 4: 506-507 (1998) https://doi.org/10.3201/eid0403.980347
  35. Sobel J, Tucker N, Sulka A, McLaughlin J, Maslanka S. Foodborne botulism in the United States, 1990-2000. Emerg. Intect. Dis. 10: 1606-1611 (2004) https://doi.org/10.3201/eid1009.030745
  36. Meng X, Karasawa T, Zou K, Kuang X, Wang X, Lu C. Characterization of a neurotoxigenic Clostridium butyricum strain isolated from the food implicated in an outbreak of food-borne type E botulism. J. Clin. Microbiol. 35: 2160-2162 (1997)
  37. Kim J, Focgeding PM. Principles of Control, pp. 121-176. In: Clostridium botulinum: Ecology and Control in Foods. Hauschild AHW, Dodds KL (eds). Marcel Dekker, Inc., New York, NY, USA (1993)
  38. Lopez AA. Complete Course in Canning, Book I: Basic information on canning. Canning Trade, Inc., Baltimore, MD, USA. p. 501 (1981)
  39. Lechowich RV, Brown WL, Diebel RH, Somers II. The role of nitrite in the production of canned cured meat products. Food Technol.-Chicago 32: 45-58 (1978)
  40. Reddy NR, Solomon HM, Fingerhut GA, Rhodehamel EJ, Balasubramaniam VM, Palaniappan S. Inactivation of Clostridium botulinum type E spores by high pressure processing. J. Food Safety 19: 277-288 (1999) https://doi.org/10.1111/j.1745-4565.1999.tb00252.x
  41. Reddy NR, Solomon HM, Tetzloff RC, Rhodehamel EJ. Inactivation of Clostridium botulinum type A spores by high-pressure processing at elevated temperatures. J. Food Protect. 66: 1402-1407 (2003) https://doi.org/10.4315/0362-028X-66.8.1402
  42. Reddy NR. Tetzloff RC, Solomon HM, Larkin JW. Inactivation of Clostridium botulinum nonproteolytic type B spores by high pressure processing at moderate to elevated high temperatures. Innov. Food Sci. Emerg. Teehnol. 7: in press (2006)