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Abstract An increase in variance (overdispersion) can occur when a binomial statistical analysis is applied to sensory
difference test data in which replicate sensory evaluations (tastings) and multiple evaluators (judges) are combined to increase
the sample size. Such a practice can cause extensive Type I errors, leading to serious misinterpretations of the data, especially
when traditional simple binomial analysis is applied. Alternatively, the use of beta binomial analysis will circumvent the
problem of overdispersion. This brief review discusses the uses and computation methodology of beta binomial analysis and

in practice evidence for the occurrence of overdispersion.
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Introduction

Sensory difference tests are used in food science to
determine if judges can discriminate between two food
stimuli which are so similar that they can be described as
confusable. Such tests are used for quality assurance,
ingredient specifications, product development, and studies
of the effects of process changes, packaging changes, and
product storage. The tests require judges to demonstrate
their ability to distinguish between the two foods stimuli in
question. Four different test methods are commonly used
as outlined: a 2-Alternative Forced Choice (2-AFC)
method, sometimes called the paired comparison where
the judge is presented with two stimuli and is required to
select one of the stimuli (e.g., the sweeter, fruitier, firmer,
etc.) to prove an ability to distinguish between the two; a
3-Alternative Forced Choice (3-AFC) method that is
similar, except that the specified target stimulus is one of
three, e.g., a judge might be told to select from three
beverages the one which is sweeter while the other two are
less sweet and are identical; the triangle test which is
similar to 3-AFC wherein the judge is not told the nature
of the difference but rather that two stimuli are identical
while one is different and the test is to select the different
one; and finally the duo-trio test that requires a judge to
taste a stimulus designated as the ‘standard’ or ‘reference’
after which a pair of stimuli are to be discriminated, one
being the same as the ‘standard’ while the other is
different. The test is to indicate which stimulus is the same
as the ‘standard’. Each of the tests outlined are generally
repeated to ensure that judges are performing better than at
chance levels. Traditionally, the results are analyzed
statistically for significance using procedures that are
based on binomial distributions, although recently, Thurstonian
analyses for determining the extent of the differences have
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been introduced (1). This article will consider some of the
problems that are associated with binomial analysis for
establishing significance and suggest a means to avoid
such problems.

Binomial statistics

It is traditional that statistical tests based on the binomial
distribution are used to determine whether the proportion
of difference tests that are performed correctly is greater
than chance, thus concluding that the difference was
‘significant’. Yet, such binomial statistics were designed to
analyze the results of tossing coins or dice when the
probability of getting a target result (‘heads’ or ‘six’) is
constant for each item (1/2 or 1/6). Coins and dice can be
considered as clones and any variability in the expected
proportion of ‘heads’ or ‘sixes’ that is obtained, is due to
chance and described by the binomial distribution.

For example, if a coin is tossed 100 (N) times and the
probability of getting ‘heads’ (p) is 1/2, and the probability
of getting “tails’ (q) is also 1/2, then the expectation is that
‘heads’ (and ‘tails’) will occur 50 times. That result,
however, will not always occur. If the coin is tossed 100
times, ‘heads’ will sometimes occur more often and
sometimes less often. This variation in expectations is
described by the binomial distribution which has a mean
of 50 (Np, the most frequent occurrence) and a variance
given by the formula Npq = 25. See Fig. 1.

The problem of overdispersion

With a set of difference tests performed by a single judge
during a single experi-mental session, it could be argued
that the probability of getting a target result (test correct) is
constant over repeated tests, should there not be fatigue or
adaptation effects over replicate testings. If data from
several judges were to be combined, however, this
situation would no longer hold because each judge can be
expected to have different sensitivities and thus their
probabilities of getting the target result (test correct) would
vary. The assumptions for the binomial test, therefore,
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Fig. 1. The binomial distribution representing the proportion of
times a coin would land as ‘heads’ after a total of 100 replicate
tosses.

would be violated. This violation can result in Type I
errors and the declaration of a ‘significant’ difference when
the results were actually due to chance or by guessing,

The variation in the sensitivity of the judges provides an
extra source of variance in the computation, more variance
than would be expected from mere binomial analysis. The
problem of this extra variance is termed “the problem of
overdispersion”.

The beta binomial distribution and gamma

There are various solutions to the problem of overdispersion
(2, 3). The approach discussed in this review uses beta distribu-
tions to describe the distributions of judge sensitivities that
are encountered during difference testing. The beta
distributions are combined with the regular binomial
distributions to give what are called beta-binomial
distributions. These combinations are the basis for the
beta-binomial statistical analysis for difference tests. The
beta-binomial with the extra variance brought in by the
beta distribution will have greater variance than the
binomial distribution alone. Greater variance means
greater difficulty in rejecting the null hypothesis and
declaring a ‘significant’ difference. In this way, it can be
seen that there is a risk of Type I error if binomial analysis
is used, rather than a beta-binomial analysis.

In an early study, Harries and Smith (4) investigated the
beta-binomial analysis for triangle tests and illustrated
some of the beta distributions. One illustration indicated a
small range of judge sensitivity while a second indicated
more of a bimodal distribution. More recently, the beta-
binomial test has been further developed by Ennis, Bi and
their coworkers (5-8) who have described overdispersion
by a gamma index (y). In the gamma index, a gamma
value of zero indicates no overdispersion while a gamma
value of unity indicates maximum overdispersion. In
general, gamma values are intermediate between zero and
unity (see examples later).

It is instructive to consider the shapes of some beta
distributions as shown in Fig. 2. At the top of Fig. 2(a) is
represented by a single line, giving the constant probability
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Fig. 2. Beta distributions. (a) represents a fixed probability value
for getting a target result when tossing coins or dice, etc. (e.g., p=
1/2 or 1/6); (b) represents possible distributions of the sensitivity
of groups of judges. The continuous line indicates two groups of
judges, one of which is sensitive and the other insensitive. The
dotted line indicates a single group of judges with a narrow range
of sensitivity.

of getting a target result (1/2, coins; 1/6 dice); gamma
would be zero. Coins and dice, however, can be considered
as clones and should human clones be the ones testing,
there would, once again, be a single probability. However,
human judges are not clones and so there will be a
distribution of probabilities (the beta distribution), according
to the sensitivity of the judges. There might be both
sensitive and insensitive judges, and therefore, a bimodal
distribution (Fig. 2(b), continuous line) would result;
gamma would not be zero. Alternatively, the judges may
have very similar sensitivity and produce a tightly bunched
distribution (see Fig. 2(b), dashed line).

When gamma is zero, there is no overdispersion and the
regular binomial statistical analysis method can be used.
Thus, analysis is a simple matter of looking up values in
tables in standard statistical texts (for example, pages 408-
413 in reference 9). When gamma is greater than zero,
indicating overdispersion, the analysis must be modified.
The beta distribution is combined with the binomial
distribution to yield the beta binomial distribution which is
then used as the basis for the analysis. In practice the
analysis is relatively simple. Once a gamma value has
been calculated, the method becomes a matter of using
alternative tables of values. Such tables as published by Bi
and Ennis (10) indicate the proportion of tests that are
required to be correct in declaring a ‘significant’ difference
for various values of gamma. For example, an interna-
tional beverage company wished to determine whether an
ingredient reduction could be detected by their trained
sensory panel of 10 judges. The company required each
judge to perform 10 one-tailed 2-AFC tests, and to
increase the statistical power of the sensory method, they
pooled the results for the 10 judges to give a total of 100
tests. Had gamma been zero, indicating no overdispersion,
a simple binomial analysis would have been appropriate
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for significance testing and the number of tests required to
be performed correctly to enable a declaration of a
significant difference (p<0.05) that would have been 59. A
subsequent analysis, however, indicated that there had
been overdispersion; because judges varied in their
sensitivities and the gamma value was not zero, but 0.5.
Accordingly, the number of tests required to be performed
correctly to declare a “significant’ difference was 70 (i.e.,
greater than 59). The experimenters, however, were not
aware of the presence and likely complication of over-
dispersion and used simple binomial statistical analysis.
The number of tests the judges performed correctly was
65. Accordingly, because this value exceeded 59, the
experimenters went on to report a significant difference
between the original and the reformulated beverages.
However, 65 tests did not exceed the actual required value
of 70 and, therefore, a Type I error was committed. The
experimenters had incorrectly declared a significant
difference and concluded that the ingredient reduction was
not successful.

Computation of gamma and its significance

Before using the statistical tables of gamma, it is important
to be able to determine the gamma value. This value can
be computed using the formula below.

_ RS 1
" B-pN,(ng-1) (ng-D)

(D

ng= number of replicates per judge
Nj= number of judges
p = mean probability value

— total number of correcttests .. X
total number of tests Nyng

> : summed over people

2 . .
(né{)) : deviation of each person from mean
R

The term S’ in the formula above expresses the variability
of the judges’ sensitivity.

To test whether gamma is significantly greater than
zero, Tarone’s z-statistic is used and is computed using the
formula below.

7= _(E_NJ_HR)_ (2)
[2Nyng (np—1)

 Z = number of standard deviations from mean of normal
distribution
X = number of correct tests for each person

p = mean probability value =

_2X

Njng

_ total number of correct tests
total number of tests
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ngp = average number of correct tests per person

2
E= E (X-nzDp) (3)

p(1-p)

It can be seen that the variability between judges is
expressed by the term ‘E’. The calculated z-value can be
used with normal distribution tables (for example, pages
404-405 in reference 9) to determine the probability of
obtaining such a gamma value by chance. Software for
these computations is available at IFPrograms, Institute for
Perception, Richmond, VA, USA. :

The beta-binomial distribution has a simple relationship
to the binomial distribution. The mean of the beta-binomial
distribution is Np, where p is the mean probability of
getting a test correct (if 10 judges each performed 10 tests
and the total number correct was 68, p = 68/100). (In the
same way, g is the mean probability of getting a test
incorrect). The variance (Npq) is modified by a simple
multiplier: [1 + (ng — 1) y]. For experiments in which the data
analysis is in terms of d’, the beta-binomial approach fits
conveniently into a Thurstonian framework (5).. The required
increase in variance for d’ is obtained using the same
multiplier.

When does overdispersion occur?

In practice, over-dispersion (a y value significantly greater
than zero) is sometimes encountered, but not always. The
question of whether different test protocols are more prone
to overdispersion than others has been asked. There is a
good reason for asking this. Judges use different cognitive
strategies for different tests (1), strategies that might elicit
a routine which could render judges to perform in similar
(similar sensitivity, low gamma) or dissimilar ways
(different sensitivities, high gamma).

Rousseau and O’Mahony (working with orange drinks)
found overdispersion with triangle tests in one study (11)
but not in another (12). Braun et al. (13) using a model
system of NaCl solutions and 2-AFC tests, reported
overdispersion, while recent unpublished work in our
laboratory, using the same method and stimuli, reported
overdispersion in one study and no overdispersion in
another. The same study compared 2-AFC, 3-AFC,
triangle and duo-trio tests and indicated overdispersion for
the triangle tests in one study and the 2-AFC tests in
another.

In another study, Delwiche and Ligget (14) required
judges to perform paired preference and 2-AFC tests for
fruit flavored beverages, chips, and cookies. The occurrence
of significant gamma values was inconsistent. For both
tests, gamma values occurred for two out of five studies
and did not occur for the same foods. Increasing the
number of replicate tastings also had little effect. These
investigators also compared the performance of judges on
2-AFC, 3-AFC, triangle and duo-trio tests with cherry
flavored drinks; a significant gamma value was obtained
only with the duo-trio tests, unlike recent study results in
our laboratory. Again using cherry flavored drinks and 2-
AFC tests; the performance of judges over a 10 day period
was measured. Performance continued to be inconsistent;
significant overdispersion occurred on three of the days of
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testing. In light of these studies, there does not appear to
be any particular pattern to support the notion that one test
may be more prone to overdispersion than another, yet
even this evidence is sparse.

To approach the problem differently, it is worth
reconsidering how values of gamma should be interpreted.
Since that judges are not human clones, it may be asked
why cases occur when gamma values are not significant
and there is no significant overdispersion. This finding
would only be possible if the addition of a beta distribution
to a binomial distribution had minimal effects on the shape
and variance of the latter. As Harries and Smith (4)
indicated, a beta distribution that was fairly compact and
clustered around the mean of a binomial distribution
would have just such a minimal effect. This result would
mean that the sensitivities of the judges in the
discrimination tests were close to the mean. As Harries
and Smith (4) further remarked, a beta distribution that
was more scattered or even bimodal would have a
substantial effect on the binomial distribution and thus
produce a significant gamma value. Bimodal distributions
can occur in preference testing when the judges are split
on their preferences, and also with difference tests if the
group of judges, who happen to be sampled, includes one
group that is sensitive and another that is insensitive.

To support these considerations, we performed
experiments in our laboratory using a sample of judges
made up of a group of knowingly less sensitive and a
group of more sensitive (15). Within each group of judges,
the sensitivities were fairly uniform and the gamma values
for the 2-AFC and 3-AFC tests were zero. When the two
groups were combined, however, the sensitivities were no
longer uniform but rather were bimodal. Accordingly,
significant gamma values (0.04, 0.06), indicating over-
dispersion, were obtained. In a second experiment, the less
sensitive and more sensitive judges performed 2-AFC
tests, and once again, within each group, zero gamma
values were obtained while a significant gamma value
(0.07) was resulted when the two groups were combined.
When the sensitivity of the less sensitive group was
increased, however, by using a warm-up procedure (16-
18), the combination of two groups who were now
comparable in their sensitivity resulted in a non-significant
gamma value, indicating the absence of overdispersion.
Thus, the occurrence of overdispersion appears to be more
a result of chance sampling than of any particular
measurement protocol.

Practical applications of beta-binomial statistics

The beta binomial allows the combination of consumers
and replicate testings in the data, to increase the sample
size. This approach might be acceptable in psychophysics,
where a large sample size might be necessary for such
tasks as fitting a response curve (Receiver Operating
Characteristic, ROC curve) for signal detection analysis of
a small group of judges (19). Such an analysis is used to
determine the decision rules or cognitive strategies used by
judges in discrimination tests. The technique, however,
should be used with caution when sampling consumers
from the population for their discrimination ability or
preferences. For example, if 10 consumers each performed
5 difference tests, even though the sample size can be
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treated as 50, it remains that only 10 actual consumers will
have participated and is hardly a representative sample.

It is also recognized that gamma values can only be
calculated to reveal possible overdispersion effects when
judges perform replicate tests. If each judge were only to
perform a single test, it would not be possible to determine
the existence of overdispersion. Thus, it is recommended
that judges should repeat the testing process at least once,
to enable the presence of overdispersion to be detected and
importantly, to avoid the possibility of Type I errors.
Overdispersion can be likened to interaction in the analysis
of variance; its presence can only be detected with
replication.

Conclusions

For significance testing with sensory difference tests, a
binomial statistical analysis is generally used. To increase
the power of the test, experimenters sometimes increase
the sample size by combining judges and their replicate
tastings. However, this practice ignores the problem of
overdispersion and can result in a Type I error (wrongly
declaring a significant difference). The reason for the
overdispersion is that judges vary in their sensitivity and
that by combining their data, the variance is increased
beyond that described by binomial statistics. This extra
variance, however, termed overdispersion, can be accounted
for by a beta distribution. Incorporating beta distribution
into the statistical analysis yields beta-binomial analysis
which avoids the problem of overdispersion and likelihood
of Type I errors. To detect problems of overdispersion, it is
necessary for each judge to perform more than one test.
The performance of replicate tests per judge should be
routine. There are further cautions, however. The beta-
binomial deals with sensitivity variation due to judge
heterogeneity and assumes that sensitivity is constant for a
given judge over replicate tests. This assumption may not
hold for all product testing situations. If sensitivity varied
over replicate tests, the statistical analysis would require an
even more complex beta-beta binomial analysis. Thus,
even though replication is required to detect the presence
of overdispersion, the number of replicates chosen should
be approached with caution since too many replicate tests
could produce ‘taste fatigue’ which in turn, would reduce
the sensitivity of the judge over replicate tests, thus
requiring a more complex beta-beta binomial analysis.
Preliminary experimentation will always be necessary for
determining the appropriate number of replicate tastings
per session to provide adequate testing and not inducing
taste fatigue.
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