Antioxidant Activity of Partially Purified Extracts Isolated from Bacillus polyfermenticus SCD Culture

  • Published : 2006.06.30

Abstract

The antioxidant activity of Bacillus polyfermenticus SCD was studied by partially purified culture extracts using various methods: ammonium sulfate precipitation, adsorption to Diaion HP-20 columns using polar solvents, and extraction using non-polar solvents. The 1,1-diphenyl-2-picyrylhydrazyl (DPPH) radical scavenging activity of these partially purified fractions was then investigated. The precipitate isolated using 75%-saturated ammonium sulfate was shown to contain about 77.2% DPPH radical scavenging activity. Using the Diaion HP-20 resin adsorption method, the fraction obtained using 60% ethanol and 60% methanol possessed 76.7 and 89.5% DPPH radical scavenging activity, respectively. Fractions obtained by extracting with the non-polar solvents 80 mg/mL chloroform, 80 mg/mL n-hexane, 80 mg/mL ethyl acetate, and 80 mg/mL butanol contained 68.4, 75.0, 70.7, and 87.5% DPPH radical scavenging activity, respectively. Further study is needed to characterize the antioxidant substance(s) released by B. polyfermenticus SCD cultures.

Keywords

References

  1. Halliwell B, Aeschbach R, Loliger J, Aruoma OI. The characterization of antioxidants. Food Chem. Toxicol. 33: 601-617 (1995) https://doi.org/10.1016/0278-6915(95)00024-V
  2. Lopaczyski W, Zeisel SH. Antioxidants, programmed cell death, and cancer. Nutr. Res. 21: 295-307 (2001) https://doi.org/10.1016/S0271-5317(00)00288-8
  3. Angelo AJ. Lipid oxidation in food. Crit. Rev. Food Sci. 36: 175-224 (1996) https://doi.org/10.1080/10408399609527723
  4. Hiroe E, Masash H, Kanae H, Hisaji T. Antioxidant properties of ferulic acid its related compounds. J. Agric. Food Chem. 45: 2374-2378 (1997) https://doi.org/10.1021/jf970055t
  5. Mates JM, Sanchez-Jimenez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell B. 32: 157-170 (2000) https://doi.org/10.1016/S1357-2725(99)00088-6
  6. Sgambato A, Ardito R, Faraglia B, Boninsegna A, Wolf FI, Cittadini A. Resveratrol, a natural phenolic compound, inhibits cell proliferation and prevents oxidative DNA damage. Mutat. Res. 496: 171-180 (2001) https://doi.org/10.1016/S1383-5718(01)00232-7
  7. Tsaliki E, Lagouri V, Doxastakis G. Evaluation of the antioxidant activity of lupin seed flour and derivatives (Lupins albus ssp. Graecus). Food Chem. 65: 71-75 (1999) https://doi.org/10.1016/S0308-8146(98)00172-1
  8. Do JR, Kang SN, Kim KJ, Lee SW. Antimicrobial and antioxidant activities and phenolic contents in the water extract if medicinal plants. Food Sci. Biotechnol. 13: 640-645 (2004)
  9. Lee EJ, Kim KS, Jung HY, Kim DH, Jang HD. Antioxidant activities of garlic (Allum sativum L.) with growing districts. Food Sci. Biotechnol. 14: 123-130 (2005)
  10. Shon MY, Choi SD, Kahng GG, Nam SH, Sung NJ. Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow, and red onions. Food Chem. Toxicol. 42: 659-666 (2004) https://doi.org/10.1016/j.fct.2003.12.002
  11. Kong WS, Kim SH, Park JS, Hahn SJ, Chung IM. Evaluation and selection of antioxidative activities of 80 collected and mated mushroom strains. Food Sci. Biotechnol. 13: 689-693 (2004)
  12. Kim JA, Lee JM, Shin DB, Lee NH. The antioxidant activity and tyrosinate inhibitory activity of phloro-tannins in Ecklonia cava. Food Sci. Biotechnol. 13: 476-480 (2004)
  13. Chung YC, Chang CT, Chao WW, Lin CF, Chou ST. Antioxidative activity and safety of the 50% ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 50: 2454-2458 (2002) https://doi.org/10.1021/jf011369q
  14. Amanatidou A, Smid EJ, Bennik MHJ, Gorris LGM. Antioxidative properties of Lactobacillus sake upon exposure to elevated oxygen concentration. FEMS Microbiol. Lett. 203: 87-94 (2001) https://doi.org/10.1111/j.1574-6968.2001.tb10825.x
  15. Kullisaar T, Zilmer M, Mikelsaar M, Vihalemm T, Annuk H, Kairane C, Kilk A. Two antioxidative lactobacilli strains as promising probiotics. Int. J. Food Microbiol. 72: 215-224 (2002) https://doi.org/10.1016/S0168-1605(01)00674-2
  16. Jun KD, Lee KH, Kim WS, Paik, HD. Microbiological identification of medical probiotic Bispan strain. Korean. J. Appl. Microbiol. 28: 124-127 (1999)
  17. Paik HD, Jung MY, Jung HY, Kim WS, Kim KT. Characterization of Bacillus polyfermenticus SCD for oral bacteriotherapy of gastrointestinal disorders. Korean. J. Food Sci. Technol. 34: 73-78 (2002)
  18. Jeong HY, Kim TH, Park JS, Kim KT, Paik HD. Antioxidative and cholesterol-reducing activity of Bacillus polyfermenticus SCD. Korean J. Biotechnol. Bioeng. 18: 371-376 (2003)
  19. Paik HD, Park JS, Park E. Effects of Bacillus polyfermenticus SCD on lipid and antioxidant metabolisms in rats fed a high-fat and high-cholesterol diet. Biol. Pharm. Bull. 28: 1270-1274 (2005) https://doi.org/10.1248/bpb.28.1270
  20. Park E, Park JS, Paik HD. Effect of Bacillus polyfermenticus SCD and its bacteriocin on MNNG-induced DNA damage. Food Sci. Biotechnol. 13: 684-688 (2004)
  21. Chen JH, Ho CT. Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J. Agric. Food Chem. 45: 2374-2378 (1997) https://doi.org/10.1021/jf970055t
  22. Lee HJ, Bae YI, Jeong CH, Shim KH. Biological activity of various solvent extracts from propolis. J. Korean Soc. Food Sci. Nutr. 34: 1-7 (2005) https://doi.org/10.3746/jkfn.2005.34.1.001
  23. El-Ghorab AH, El-Massry KH, Marx F, Ahmed H, Fadel HM. Antioxidant activity of Egyptian Eucalyptus camaldulensis var. brevirostris leaf extracts. Nahrung 1: 41-45 (2003)
  24. Shirataki Y, Takao M, Yoshida S, Toda S. Antioxidative components isolated from roots of Astragalus membranaceus bunge (Astragali Radix). Phytother. Res. 11: 603-605 (1997) https://doi.org/10.1002/(SICI)1099-1573(199712)11:8<603::AID-PTR161>3.0.CO;2-U