Health Promoting Properties of Natural Flavor Substances

  • Jun, Mi-Ra (Department of Food Science, Rutgers, The State University of New Jersey) ;
  • Jeon, Woo-Sik (Division of Applied Biology & Chemistry, Kyungpook National University) ;
  • Ho, Chi-Tang (Department of Food Science, Rutgers, The State University of New Jersey)
  • Published : 2006.06.30

Abstract

The study of health promoting and disease preventing compounds in food or by themselves, so called nutraceuticals or functional foods, has become a major field of research in food science. Natural flavor compounds are usually present in food, essential oils, spices, and herbs. These compounds can produce aroma, not only by themselves, but also in combination with other compounds. Today, however, greater interest is being paid to the health promoting properties of natural flavor substances rather than their flavoring properties. In fact, a number of naturally occurring flavor compounds that possess health promoting and disease preventing properties have been extensively studied and identified. The beneficial properties of natural volatile flavor compounds as well as non-volatile substances in spices and herbs discussed in this review include antioxidant, anticarcinogenic, anti-inflammatory, and immune enhancing activities.

Keywords

References

  1. Childs NM, Poryzees GH. Food that help prevent disease: consumer attitudes and public policy implications. Brit. Food J. 100: 419-426 (1998) https://doi.org/10.1108/00070709810247825
  2. Craig WJ. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 70: 491s-499s (1999) https://doi.org/10.1093/ajcn/70.3.491s
  3. Burdock GA. Fenaroli's handbook of flavor ingredients. 3rd ed. CRC press, Inc., Boca Ranton, FL, USA. pp. 1-2 (1995)
  4. Risch SJ. Spices: Sources, processing, and chemistry. pp. 2-6. In: Spices: Flavor Chemistry and Antioxidant Properties. ACS symposium series 660. Risch SJ, Ho CT (eds). American Chemical Society, Washington, DC, USA (1997)
  5. McCall MR, Frei B. Can antioxidant vitamins materially reduce oxidative damage in human? Free Radical Bio. Med. 26: 1034-1053 (1999) https://doi.org/10.1016/S0891-5849(98)00302-5
  6. Bagchi D, Bagchi M, Stohs SJ, Das DK, Ray SD, Kuszynski CA, Joshi SS, Pruess HG. Free radicals and grape seed proanthocyanidin extract: importance in human health and disease prevention. Toxicology 148: 187-197 (2000) https://doi.org/10.1016/S0300-483X(00)00210-9
  7. Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radical Bio. Med. 27: 1173-1181 (1999) https://doi.org/10.1016/S0891-5849(99)00203-8
  8. Burri J, Graf M, Lambelet P, Loliger J. Vanillin: more than a flavoring agent-a potent antioxidant. J. Sci. Food Agric. 48: 49-56 (1989) https://doi.org/10.1002/jsfa.2740480107
  9. Kamat JP, Ghosh A, Devasagayam TPA. Vanillin as an antioxidant in rat liver mitochondria: inhibition of protein oxidation and lipid peroxidation induced by photosensitization. Mol. Cell Biochem. 209: 47-53 (2000) https://doi.org/10.1023/A:1007048313556
  10. Kumar SS, Priyadarsini KI, Sainis KB. Inhibition of peroxynitrite-mediated reactions by vanillin. J. Agric. Food Chem. 52: 139-145 (2004) https://doi.org/10.1021/jf030319d
  11. Prasad K, Laxdal VA, Yu M, Raney BL. Antioxidant activity of allicin, an active principle in garlic. Mol. Cell Biochem. 148: 183-189 (1995) https://doi.org/10.1007/BF00928155
  12. Rabinkov A, Miron T, Konstantinovski L, Wilchek M, Mirelman D, Weiner L. The mode of action of allicin: trapping of radicals and interaction with thiol containing proteins. Biochim. Biophys. Acta 1379: 233-244 (1998) https://doi.org/10.1016/S0304-4165(97)00104-9
  13. Nishimura H, Higuchi O, Tateshita K. Antioxidative activity of sulfur-containing compounds in Allium species for human LDL oxidation in vitro. Biofactors 21: 277-280 (2004) https://doi.org/10.1002/biof.552210154
  14. Ohnishi ST, Kojinra R. Antioxidant activities of aged garlic extracts and cancer chemotherapy. pp. 105-115. In: Nutraceuticals, Designer Foods III; Garlic, Soy, and Licorice. Lachance PA (ed). Food & Nutrition Press, Inc., Trumbull, CT, USA (1997)
  15. Kim KM, Chun SB, Koo MS, Choi WJ, Kim TW, Kwon YG, Chung HT, Billiar TR, Kim YM. Differential regulation of NO availability from macrophages and endothelial cells by the garlic component S-allyl cysteine. Free Radical Bio. Med. 30: 747-756 (2001) https://doi.org/10.1016/S0891-5849(01)00460-9
  16. Huang CN, Hong JS, Yin MC. Antioxidative and antiglycative effects of six organosulfur compounds in low-density lipoprotein and plasma. J. Agric. Food Chem. 52: 3674-3678 (2004) https://doi.org/10.1021/jf0307292
  17. Nagashima K. Inhibitory effect of eugenol on $Cu^{2+}$ - catalyzed lipid peroxidation in human erythrocyte membranes. Int. J. Biochem. 21: 745-749 (1989) https://doi.org/10.1016/0020-711X(89)90205-X
  18. Naidu KA. Eugenol-an inhibitor of lipoxygenase-dependent lipid peroxidation. Prostag. Leukot. Ess. 53: 381-383 (1995) https://doi.org/10.1016/0952-3278(95)90060-8
  19. Lagouri V, Blekas G, Tsimidou M, Kokkini S, Boskou D. Composition and antioxidant activity of essential oils from Oregano plants grown in Greece. Z. Lebensm. Unters. For. 197: 20-23 (1993) https://doi.org/10.1007/BF01202694
  20. Aeschbach R, Loliger J, Scott BC, Murcia A, Butler J, Halliwell B, Aruoma OI. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 32: 31-36 (1994) https://doi.org/10.1016/0278-6915(84)90033-4
  21. Lagouri V, Boskou D. Screening for antioxidant activity of essential oils obtained from spices. pp. 869-879. In: Food Flavors: Generation, Analysis and Process Influence. Charalambous G (ed). Elsevier, Amsterdam, Netherlands (1995)
  22. Yanishlieva NV, Marinova EM, Gordon MH, Raneva VG. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 64: 9-66 (1999)
  23. Masuda Y, Kikuzaki H, Hisamoto M, Nakatani N. Antioxidant properties of gingerol related compounds from ginger. Biofactors 21: 293-296 (2004) https://doi.org/10.1002/biof.552210157
  24. Ray A. Cancer preventive role of selected dietary factors. Indian J. Cancer 42: 15-24 (2005) https://doi.org/10.4103/0019-509X.15095
  25. Wang CC, Chen LG, Lee LT, Yang LL. Effects of 6-gingerol, an antioxidant from ginger, on inducing apoptosis in human leukemic HL-60 cells. In Vivo 17: 641-645 (2003)
  26. Tsuda H, Ohshima Y, Nomoto H, Fujita K, Matsuda E, Iigo M, Takasuka N, Moore MA. Cancer prevention by natural compounds. Drug Metab. Pharmacokinet. 19: 245-263 (2004) https://doi.org/10.2133/dmpk.19.245
  27. Surh YJ. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol. 40: 1091-1097 (2002) https://doi.org/10.1016/S0278-6915(02)00037-6
  28. Fukao T, Hosono T, Misawa S, Seki T, Ariga T. The effects of allyl sulfides on the induction of phase II detoxification enzymes and liver injury by carbon tetrachloride. Food Chem. Toxicol. 42: 743-749 (2004) https://doi.org/10.1016/j.fct.2003.12.010
  29. Lee EJ, Kim KS, Jung HY, Kim DH, Jang HD. Antioxidant activities of garlic (Allium sativum 1.) with growing districts. Food Sci. Biotechnol. 14: 123-130 (2005)
  30. Horie T, Awazu S, Itakura Y, Fuwa T. Identified diallyl polysulfides from an aged garlic extract which protects the membranes from lipid peroxidation. Planta Med. 58: 468-469 (1992) https://doi.org/10.1055/s-2006-961517
  31. Moldao-Martins M, Palavra A, Beirao da Costa ML, Bernardo-Gil MG. Supercritical $CO_{2}$ extraction of Thymus zygis J. subsp. sylvestris aroma. J. Supercrit. Fluid 18: 25-34 (2000) https://doi.org/10.1016/S0896-8446(00)00047-4
  32. Corticchiato M, Tomi F, Bernardini AF, Casanova J. Composition and infraspecific variability of essential oil from Thymus herba barona Lois. Biochem. Syst. Ecol. 26: 915-932 (1998) https://doi.org/10.1016/S0305-1978(98)00041-6
  33. Tepe B, Daferera D, Sokmen M, Polissiou M, Sokmen A. In vitro antimicrobial and antioxidant activities of the essential oils and various extracts of Thymus eigii M. Zohary et P.H. Davis. J. Agric. Food Chem. 52: 1132-1137 (2004) https://doi.org/10.1021/jf035094l
  34. Nagababu E, Lakshmaiah N. Inhibitory effect of eugenol on non-enzymatic lipid peroxidation in rat liver mitochondria. Biochem. Pharmacol. 43: 2393-2400 (1992) https://doi.org/10.1016/0006-2952(92)90318-D
  35. Wang M, Li J, Ho GS, Peng X, Ho CT. Isolation and identification of antioxidative flavonoid glycosides from thyme (Thymus vulgaris L.). J. Food Lipids 5: 313-321 (1998) https://doi.org/10.1111/j.1745-4522.1998.tb00127.x
  36. Nakatani N, Inatani R. Structure of rosmanol, a new antioxidant from rosemary (Rosmarinus officinalis L.). Agric. Biol. Chem. 45: 2385-2386 (1981) https://doi.org/10.1271/bbb1961.45.2385
  37. Nakatani N, Inatani R. Two antioxidative diterpenes from rosemary (Rosmarinus officinalis L.) and a revisal structure of rosmanol. Agric. Biol. Chem. 48: 2081-2085 (1984) https://doi.org/10.1271/bbb1961.48.2081
  38. Inatani R, Nakatani N, Fuwa H, Seto H. Structure of a new antioxidative phenolic diterpene isolated from rosemary (Rosmarinus officinalis L.). Agric. Biol. Chem. 46: 1661-1666 (1982) https://doi.org/10.1271/bbb1961.46.1661
  39. Houlihan CM, Ho CT, Chang SS. Elucidation of the chemical structure of a novel antioxidant, rosmaridiphenol, isolated from rosemary. J. Am. Oil Chem. Soc. 61: 1036-1039 (1984) https://doi.org/10.1007/BF02636212
  40. Houlihan CM, Ho CT, Chang SS. The structure of rosmariquinone, a new antioxidant isolated from Rosmarinus officinalis L. J. Am. Oil Chem. Soc. 63: 96-98 (1985)
  41. Cuvelier ME, Richard H, Berset C. Antioxidant activity and phenolic composition of pilot-plant and commercial extracts of sage and rosemary. J. Am. Oil Chem. Soc. 73: 645-652 (1996) https://doi.org/10.1007/BF02518121
  42. Chen Q, Shi H, Ho CT. Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. J. Am. Oil Chem. Soc. 69: 999-1002 (1992) https://doi.org/10.1007/BF02541065
  43. Offord EA, Guillot F, Aeschbach R, Loliger J, Pfeifer AMA. Antioxidant and biological properties of rosemary components: Implications for food and health. pp. 88-96. In: Natural Antioxidants: Chemistry, Health Effects, and Application. Shahidi F (ed). AOCS Press, Champaign, IL, USA (1997)
  44. Brieskorn CH, Domling HJZ. Carnosic acid as an antioxidant in rosemary and sage leaves. Z. Lebensm. Unters. For. 141: 10-16 (1969)
  45. Inatani R, Nakatani N, Fuwa H. Antioxidative effect of the constituents of rosemary (Rosmarinus officinalis L.) and their derivatives. Agric. Biol. Chem. 47: 521-528 (1983) https://doi.org/10.1271/bbb1961.47.521
  46. Madsen HL, Bertelsen G, Skibsted LH. Antioxidative activity of spices and spice extracts. pp. 176-187. In: Spices: Flavor Chemistry and Antioxidant Properties. ACS symposium series 660. Risch SJ, Ho CT (eds). American Chemical Society, Washington, DC, USA (1997)
  47. Cuvelier ME, Richard H, Berset C. Antioxidant constituents in sage (Salvia officinalis). J. Agric. Food Chem. 42: 665-669 (1994) https://doi.org/10.1021/jf00039a012
  48. Chen CW, Lee TC, Ho CT. Antioxidative effect and kinetics study of capsanthin on the chlorophyll-sensitized photooxidation of soybean oil and selected flavor compounds. pp. 188-198. In: Spices: Flavor Chemistry and Antioxidant Properties. ACS symposium series 660. Risch SJ, Ho CT (eds). American Chemical Society, Washington, DC, USA (1997)
  49. Surh YJ. More than spice: capsaicin in hot chili peppers makes tumor cells commit suicide. J. Natl. Cancer Inst. 94: 1263-1265 (1999)
  50. Caragay AB. Cancer-preventive foods and ingredients. Food Technol.-Chicago 46: 65-68 (1992)
  51. Crowell PL. Prevention and therapy of cancer by dietary monoterpenes. J. Nutr. 129: 775s-778s (1999) https://doi.org/10.1093/jn/129.3.775S
  52. Maltzman T, Hurt L, Elson C, Tanner M, Gould M. The prevention of nitrosomethylurea-induced mammary tumors by d-limonene and orange oil. Carcinogenesis 10: 781-783 (1989) https://doi.org/10.1093/carcin/10.4.781
  53. Crowell PL. Chemoprevention and therapy of cancer by d-limonene. Crit. Rev. Oncog. 5: 1-22 (1994) https://doi.org/10.1615/CritRevOncog.v5.i1.10
  54. Chen X, Yano Y, Hasuma T, Yoshimata T, Yinna W, Otani S. Inhibition of farnexyl protein transferase and P21 rase membrane association by d-limonene in human pancreas tumor cells in vitro. Chin. Med. Sci. J. 14: 138-144 (1999)
  55. Chung MS. Volatile compounds of Zanthoxylum piperitum A.P.DC. Food Sci. Biotechnol. 14: 529-532 (2005)
  56. Yuri T, Danbara N, Tsujita-Kyutoku M, Kiyozuka Y, Senzaki H, Shikata N, Kanzaki H, Tsubura A. Perillyl alcohol inhibits human breast cancer cell growth in vitro and in vivo. Breast Cancer Res. Tr. 84: 251-260 (2004) https://doi.org/10.1023/B:BREA.0000019966.97011.4d
  57. Burke YD, Ayoubi AS, Werner SR, McFarland BC, Heilman DK, Ruggeri BA, Crowell PL. Effects of the isoprenoids perillyl alcohol and farnesol on apoptosis biomarkers in pancreatic cancer chemoprevention. Anticancer Res. 22: 3127-3134 (2002)
  58. Ray A. Cancer preventive role of selected dietary factors. Indian J. Cancer. 42: 15-24 (2005) https://doi.org/10.4103/0019-509X.15095
  59. Greenwald P. Clinical trials in cancer prevention: current results and perspectives for the future. J. Nutr. 134: 3507S-3512S (2004)
  60. Elegbede JA, Flores R, Wang RC. Perillyl alcohol and perillaldehyde induced cell cycle arrest and cell death in BroTo and A549 cells cultured in vitro. Life Sci. 73: 2831-2840 (2003) https://doi.org/10.1016/S0024-3205(03)00701-X
  61. Duncan RE, Lau D, El-Sohemy A, Archer MC. Geraniol and beta-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem. Pharmacol. 68: 1739-1747 (2004) https://doi.org/10.1016/j.bcp.2004.06.022
  62. Camesecchi S, Bras-Goncalves R, Bradaia A, Zeisel M, Gosse F, Poupon MF, Raul F. Geraniol, a component of plant essential oils, modulates DNA synthesis and potentiates 5-fluorouracil efficacy on human colon tumor xenografts. Cancer Lett. 215: 53-59 (2004) https://doi.org/10.1016/j.canlet.2004.06.019
  63. McAnally JA, Jung M, Mo H. Famesyl-O-acetylhydroquinonc and geranyl-O-acetylhydroquinone suppress the proliferation of murine B16 melanoma cells, human prostate and colon adenocarcinoma cells, human lung carcinoma cells, and human leukemia cells. Cancer Lett. 202: 181-192 (2003) https://doi.org/10.1016/j.canlet.2003.08.008
  64. Carnesecchi S, Bradaia A, Fischer B, Coelho D, Scholler-Guinard M, Gosse F, Raul F. Perturbation by geraniol of cell membrane permeability and signal transduction pathways in human colon cancer cells. J. Pharmacol. Exp. Ther. 303: 711-715 (2002) https://doi.org/10.1124/jpet.102.039263
  65. Burke YD, Stark MJ, Roach SL, Sen SE, Crowell PL. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol. Lipids 32: 151-156 (1997) https://doi.org/10.1007/s11745-997-0019-y
  66. He L, Mo H, Hadisusilo S, Qureshi AA, Elson CE. Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J. Nutr. 127: 668-674 (1997)
  67. Zheng GQ, Kenney PM. Lam LK. Sesquiterpenes from clove (Eugenia caryophyllala) as potential anticarcinogenic agents. J. Nat. Prod. 55: 999-1003 (1992) https://doi.org/10.1021/np50085a029
  68. Cha JD, Jeong MR. Lee YE. Induction of Apoptosis in Human Oral Epidermoid Carcinoma Cells by Essential Oil of Chrysanthemum boreale Makino. Food Sci. Biotechnol. 14: 350-354 (2005)
  69. Ho CT, Wang M, Wei GJ, Huang TC, Huang MT. Chemistry and antioxidative factors in rosemary and sage. Biofactors 13: 161-166 (2000) https://doi.org/10.1002/biof.5520130126
  70. Huang MT, Ho CT, Wang ZY, Ferraro T, Lou YR, Stauber K. Ma W, Georgiadis C, Laskin JD, Conney AH. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer Res. 54: 701-708 (1994a)
  71. Gali-Muhtasib HU, Affara NI. Chemopreventive effects of sage oil on skin papillomas in mice. Phytomedicine 7: 129-136 (2000) https://doi.org/10.1016/S0944-7113(00)80085-9
  72. Singletary K, MacDonald C, Wallig M. Inhibition by rosemary and carnosol of 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett. 104: 43-48 (1996) https://doi.org/10.1016/0304-3835(96)04227-9
  73. Moran AE, Carothers AM, Weyant MJ, Redston M, Bertagnolli MM. Carnosol inhibits beta-catenin tyrosine phosphorylation and prevents adenoma formation in the C57BL/6J/Min/+(Min/+) mouse. Cancer Res. 65: 1097-1104 (2005)
  74. Huang SC, Ho CT, Lin-Shiau SY, Lin JK. Carnosol inhibits the invasion of B16/F10 mouse melanoma cells by suppressing metalloproteinase-9 through down-regulating nuclear factor-kappa B and C-Jun. Biochem. Pharmacol. 69: 221-232 (2005) https://doi.org/10.1016/j.bcp.2004.09.019
  75. Huang MT, Ma W, Yen P, Xie JG, Han J, Frenkel K, Grunberger D. Conney AH. Inhibitory effects of topical application of low doses of curcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion and oxidized DNA bases in mouse epidermis. Carcinogenesis 18: 83-88 (1997) https://doi.org/10.1093/carcin/18.1.83
  76. Stoner GD, Mukhtar H. Polyphenols as cancer chemopreventive agents. J. Cell Biochem. 22: 169-180 (1995)
  77. Dorai T, Aggarwal BB. Role of chemopreventive agents in cancer therapy. Cancer Lett. 215: 129-140 (2004) https://doi.org/10.1016/j.canlet.2004.07.013
  78. Conney AA, Lou YR, Xie JG, Osawa T. Newmark HL. Liu Y, Chang RL. Huang MT. Some perspectives on dietary inhibitors of carcinogenesis; studies with curcumin and tea. P. Soc. Exp. Biol. Med. 216: 234-245 (1997)
  79. Duvoix A, Blasius R, Delhalle S, Schnekenburger M, Morceau F, Henry E, Dicato M, Diederich M. Chemopreventive and therapeutic effects of curcumin. Cancer Lett. 223: 181-190 (2005) https://doi.org/10.1016/j.canlet.2004.09.041
  80. Thapliyal R, Maru G.B. Inhibition of cytochrome P450 isozymes bycurcumins in vitro and in vivo. Food Chem. Toxicol. 39: 541-547 (2001) https://doi.org/10.1016/S0278-6915(00)00165-4
  81. Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS. Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res. 59: 597-601 (1999)
  82. Hong J, Bose M, Ju J, Ryu J, Chen X, Sang S, Lee M, Yang CS. Modulation of arachidonic acid metabolism by curcumin and related ${\beta}$-diketone derivatives: effects on cytosolic phospholipase $A_{2}$, cycloxygenases and 5-lipoxygenase. Carcinogenesis 25: 1671-1679 (2004) https://doi.org/10.1093/carcin/bgh165
  83. Jung EM, Lim JH, Lee TJ, Park JW, Choi KS, Kwon TK. Curcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 (DR5). Carcinogenesis 26: 1905-1913 (2005) https://doi.org/10.1093/carcin/bgi167
  84. Shimizu M, Weinstein IB. Modulation of signal transduction by tea catechins and related phytochemicals. Mutat. Res. 591: 147-160 (2005) https://doi.org/10.1016/j.mrfmmm.2005.04.010
  85. Pinto JT, Rivlin RS. Garlic and prevention of prostate cancer. pp. 177-187. In: Nutraceuticals, Designer Foods III Garlic. Soy, and Licorice. Lachance PA (ed). Food & Nutrition Press, Inc., Trumbull. CT, USA (1997)
  86. Unnikrishnan MC, Kuttan R. Tumour reducing and anticarcinogenic activity of selected spices. Cancer Lett. 51: 85-89 (1990) https://doi.org/10.1016/0304-3835(90)90235-P
  87. Wargovich MJ. New dietary anticarcinogens and prevention of gastrointestinal cancer. Dis. Colon Rectum 31: 72-75 (1988) https://doi.org/10.1007/BF02552576
  88. Belman S. Onion and garlic oils inhibit tumor promotion. Carcinogenesis 4: 1063-1065 (1983) https://doi.org/10.1093/carcin/4.8.1063
  89. Huang MT. Thomas F, Ho CT. Cancer chemoprevention by phytochemicals in fruits and vegetables. pp. 2-16. In: Food Phytochemicals for Cancer Prevention I. Huang MT, Osawa T, Ho CT. Rosen RT (eds). American Chemical Society, Washington, DC, USA (1994b)
  90. Reuter HD, Heinrich PK, Lawson LD. Therapeutic effects and applications of garlic and its preparation. pp. 135-212. In: Garlic: The Science and Therapeutic Application of Allium sativum L. and Related Species. Koch HP, Lawson LD (eds). Williams & Wilkins. Baltimore, MD, USA (1996)
  91. Hong JY, Wang ZY, Smith T, Zhou S. Shi S, Pan J, Yang CS. Inhibitory effects of diallyl sulfide on the metabolism and tumorigenecity of the tobacco-specific carcinogen 4-(methyl-nitrosamino )-1-(3-pyridyl)-1-butanone (NNK) in A/J mouse lung. Cancinogenesis 13: 901-904 (1992) https://doi.org/10.1093/carcin/13.5.901
  92. Apitz-Castro R, Badimon JJ, Badimon L. Effect of ajoene, the major antiplatelet compound trom garlic, on platelet thrombus formation. Thromb. Res. 68: 145-155 (1992) https://doi.org/10.1016/0049-3848(92)90030-E
  93. Reddy AC, Lokesh SR. Studies on anti-inflammatory activity of spice principles and dietary n-3 polyunsaturated fatty acids on carrageenan-induced inflammation in rats. Ann. Nutr. Metabol. 38: 349-358 (1994) https://doi.org/10.1159/000177833
  94. Fukushima S, Takada N, Hori T, Wanibuchi H. Cancer prevention by organosulfur compounds from garlic and onion. J. Cell Biochem. 27: 100-105 (1997)
  95. Fukushima S, Takada N, Wanibuchi H, Hori T, Min W, Ogawa M. Suppression of chemical carcinogenesis by water-soluble organosulfur compounds. J. Nutr. 131: 1049S-1053S (2001)
  96. Takada N. Matsuda T, Otoshi T, Yano Y, Otani S, Hasegawa T. Nakae D, Konishi Y, Fukushima S. Enhancement by organosulfur compounds from garlic and onions of diethylnitrosamine-induccd glutathione S-transferase positive foci in the rat liver. Cancer Res. 54:2895-2899 (1994). Erratum in: Cancer Res. 55:2484 (1995)
  97. Chen C, Pung D, Leong V, Hebbar V, Shen G, Nair S, Li W, Kong AN. Induction of detoxifying enzymes by garlic organosulfur compounds through transcription factor Nrf2: effect of chemical structure and stress signals. Free Radical Bio. Med. 37: 1578-1590 (2004) https://doi.org/10.1016/j.freeradbiomed.2004.07.021
  98. Arora A, Shykla Y. Induction of apoptosis by diallyl sulfide in DMBA-induced mouse skin tumors. Nutr. Cancer 44: 89-94 (2002) https://doi.org/10.1207/S15327914NC441_12
  99. Sigounas G, Hooker J, Anagnostou A, Steiner M. S-Allylmercapto-cysteine inhibits cell proliferation and reduces the viability of erythroleukemia, breast, and prostate cancer cell lines. Nutr. Cancer 27: 186-191 (1997) https://doi.org/10.1080/01635589709514523
  100. Hageman GJ, van Herwijnen MH, Schilderman PA, Rhijnsburger EH, Moonen EJ, Kleinjans JC. Reducing effects of garlic constituents on DNA adduct formation in human lymphocytes in vitro. Nutr. Cancer 27: 177-185 (1997) https://doi.org/10.1080/01635589709514522
  101. Aggarwal BB, Shishodia S. Suppression of the nuclear factor-kappaB activation pathway by spice-derived phytochemicals: reasoning for seasoning. Ann. NY Acad. Sci. 1030: 434-441 (2004) https://doi.org/10.1196/annals.1329.054
  102. Jeong WS, Kim IW, Hu R, Kong AN. Modulatory Properties of Various Natural Chemopreventive Agents on the Activation of NF-kB Signaling Pathway. Pharm. Res. 21: 661-670 (2004) https://doi.org/10.1023/B:PHAM.0000022413.43212.cf
  103. Kim SO, Kundu JK, Shin YK, Park JH, Cho MH, Kim TY, Surh YJ. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-kappaB in phorbol esterstimulated mouse skin. Oncogene 24: 2558-2567 (2005) https://doi.org/10.1038/sj.onc.1208446
  104. Pestka JJ, Witt MF. An Overview of Immune Functions. Food Technol.-Chicago 39: 83-90 (1985)
  105. Joe B, Lokesh BR. Effect of curcumin and capsaicin on arachidonic acid metabolism and lysosomal enzyme secretion by rat peritoneal macrophages. Lipids 32: 1173-1180 (1997) https://doi.org/10.1007/s11745-997-0151-8
  106. Maklad YA, Aboutabl EA, el-Sherei MM, Meselhy KM. Bioactivity studies of Salvia transsylvanica (Schur ex Griseb) grown in Egypt. Phytother. Res. 13: 147-150 (1999) https://doi.org/10.1002/(SICI)1099-1573(199903)13:2<147::AID-PTR397>3.0.CO;2-E
  107. Chan MM, Ho CT, Huang HI. Effects of three dietary phytochemicals from tea, rosemary and turmeric on inflammation-induced nitrite production. Cancer Lett. 1: 23-29 (1995)
  108. Sotelo-Felix JI, Martinez-Fong D, Muriel De la Torre P. Protective effect of carnosol on $CCl_{4}$-induced acute liver damage in rats. Eur. J. Gastroen. Hepat. 14:1001-1006 (2002) https://doi.org/10.1097/00042737-200209000-00011
  109. Lo AH, Liang YC, Lin-Shiau SY, Ho CT, Lin JK. Carnosol, an antioxidant in rosemary, suppresses inducible nitric oxide synthase through down-regulating nuelear factor-kappaB in mouse macrophages. Carcinogenesis 23: 983-991 (2002) https://doi.org/10.1093/carcin/23.6.983
  110. Joe B, Rao UJSP, Lokesh BR. Presence of an acidic glycoprotein in the serum of arthritic rats; modulation by capsaicin and curcumin. Mol. Cell Biochem. 169: 125-134 (1997) https://doi.org/10.1023/A:1006877928703
  111. Joe B, Lokesh BR. Role of capsaicin, curcumin and dietary n-3 fatty acids in lowering the generation of reactive oxygen species in rat peritoneal macrophages. Biochim. Biophys. Acta 1224: 255-263 (1994) https://doi.org/10.1016/0167-4889(94)90198-8
  112. Cho JW, Park K, Kweon GR, Jang BC, Baek WK, Suh MH, Kim CW, Lee KS, Suh SI. Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp. Mol. Med. 37: 186-192 (2005) https://doi.org/10.1038/emm.2005.25
  113. Deby-Dupont G, Mouithys-Mickalad A, Serteyn D, Lamy M, Deby C. Resveratrol and curcumin reduce the respiratory burst of Chlamydia-primed THP-1 cells. Biochem. Bioph. Res. Co. 333: 21-27 (2005) https://doi.org/10.1016/j.bbrc.2005.05.073
  114. Kwon YK, Jun JM, Shin SW, Cho JW, Suh SI. Curcumin decreases cell proliferation rates through BTG2-mediated cyelin D1 down-regulation in U937 cells. Int. J. Oncol. 26: 1597-1603 (2005)
  115. Huang MT, Ma W, Lu YP, Chang RL, Fisher C, Manchand PS, Newmark HL, Conney AH. Effects of curcumin, demethoxy-curcumin, bisde-methoxycurcumin and tetrahydrocurcumin on 12-O-tetradecanoylphorbol-13-acetate-induced tumor promotion. Carcinogenesis 16: 2493-2497 (1995) https://doi.org/10.1093/carcin/16.10.2493
  116. Azuma Y, Ozasa N, Ueda Y, Takagi N. Pharmacological studies on the anti-inflammatory action of phenolic compounds. J. Dental Res. 65: 53-56 (1986) https://doi.org/10.1177/00220345860650010901
  117. Santos FA, Rao VS. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother. Res. 14: 240-244 (2000) https://doi.org/10.1002/1099-1573(200006)14:4<240::AID-PTR573>3.0.CO;2-X
  118. Juergens UR, Stober M, Schmidt-Schilling L, Kleuver T, Vetter H. Anti-inflammatory effects of eucalyptol (1,8-cineole) in bronchial asthma: inhibition of arachidonic acid metabolism in human blood monocytes in vitro. Eur. J. Med. Res. 17: 508-510 (1998)
  119. Santos FA, Silva RM, Campos AR, De Araujo RP, Lima Junior RC, Rao VS. 1,8-Cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem. Toxicol. 42: 579-584 (2004) https://doi.org/10.1016/j.fct.2003.11.001
  120. Brand C, Ferrante A, Prager RH, Riley TV, Carson CF, Finlay-Jones JJ, Hart PH. The water-soluble components of the essential oil of Melaleuca alternifolia (tea tree oil) suppress the production of superoxide by human monocytes, but not neutrophils, activated in vitro. Inflamm. Res. 50: 213-219 (2001) https://doi.org/10.1007/s000110050746
  121. Sharma JN, Srivastava KC, Gan EK. Suppressive effects of eugenol and ginger oil on arthritic rats. Pharmacology 49: 314-318 (1994) https://doi.org/10.1159/000139248
  122. Park KK, Chun KS, Lee JM, Lee SS, Surh YJ. Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett. 129: 139-144 (1998) https://doi.org/10.1016/S0304-3835(98)00081-0
  123. Mo SJ, Son EW, Rhee DK, Pyo S. Modulation of TNF-alpha-induced ICAM-1 expression, NO and H2O2 production by alginate, allicin and ascorbic acid in human endothelial cells. Arch. Pharm. Res. 26: 244-251 (2003) https://doi.org/10.1007/BF02976837
  124. al-Zuhair H, el-Sayeh B, Ameen HA, Al-Shoora H. Pharmacological studies of cardamom oil in animals. Pharmacol. Res. 34: 79-82 (1996) https://doi.org/10.1006/phrs.1996.0067
  125. Mazumder A, Raghavan K, Weinstein J, Kohn KW, Pommier Y. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol. 49: 1165-1170 (1995) https://doi.org/10.1016/0006-2952(95)98514-A
  126. Ranjan D, Johnston TD, Wu G, Elliott L, Bondada S, Nagabhushan M. Curcumin blocks cyelosporine A-resistant CD 28 costimulatory pathway of human T-cell proliferation. J. Surg. Res. 77: 174-178 (1998a) https://doi.org/10.1006/jsre.1998.5374
  127. Ranjan D, Siquijor A, Johnston TD, Wu G, Nagabhuskahn M. The effect of curcumin on human B-cell immortalization by Epstein-Barr virus. Am. Surgeon 64: 47-51 (1998b)
  128. Liu CT. Effect of garlic oil on hepatic arachidonic acid content and immune response in rats. J. Agric. Food Chem. 46: 4642-4647 (1998) https://doi.org/10.1021/jf980466p
  129. Lamm DL, Riggs DR. Enhanced immunocompetence by garlic: role in bladder cancer and other malignancies. J. Nutr. 131: 1067S-1070S (2001)
  130. Kyo E, Uda N, Kasuga S, Itakura Y. Immunomodulatory effects of aged garlic extract. J. Nutr. 131: 1075S-1079S (2001)
  131. Pinto JT, Rivlin RS. Antiproliferative effects of allium derivatives from garlic. J. Nutr. 131: 1058S-1060S (2001)
  132. Lang A, Lahav M, Sakhnini E, Barshack I, Fidder HH, Avidan B, Bardan E, Hershkoviz R, Bar-Meir S, Chowers Y. Allicin inhibits spontaneous and TNF-alpha induced secretion of proinflammatory cytokines and chemokines from intestinal epithelial cells. Clin. Nutr. 23: 1199-1208 (2004) https://doi.org/10.1016/j.clnu.2004.03.011
  133. Bruck R, Aeed H, Brazovsky E, Noor T, Hershkoviz R. Allicin, the active component of garlic, prevents immune-mediated, concanavalin A-induced hepatic injury in mice. Liver Int. 25: 613-621 (2005) https://doi.org/10.1111/j.1478-3231.2005.01050.x
  134. Salem ML, Hossain MS. Protective effect of black seed oil from Nigella sativa against murine cytomegalovirus infection. Int. J. Immunopharmacol. 22: 729-740 (2000) https://doi.org/10.1016/S0192-0561(00)00036-9