A Study on the Distribution Characteristics of Nitrite Oxidizing Bacteria in Wastewater Nitrification Systems

폐수 질산화 시스템에서 아질산 산화 미생물의 분포 특성 연구

  • Kim, Sun-Hee (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Kim, Dong-Jin (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Yoo, Ik-Keun (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Cha, Gi-Cheol (Department of Environmental Engineering, Yonsei University)
  • 김선희 (한림대학교 환경생명공학과) ;
  • 김동진 (한림대학교 환경생명공학과) ;
  • 유익근 (울산대학교 생명화학공학부) ;
  • 차기철 (연세대학교 환경공학과)
  • Published : 2006.10.31

Abstract

Genus Nitrospira and Nitrobacter species are the key nitrite-oxidizing bacteria(NOB) in nitrifying wastewater treatment plants. It has been hypothesized that genus Nitrospira are K-strategists(low $K_6$ value) that can exploit low amounts of nitrite more efficiently than Nitrobacter. In contrast, Nitrobacter species are r-strategists(high $V_{max}$) that can grow faster than Nitrospira. It has also been known that the availability of organic compounds and dissolved oxygen as well as nitrite affects the distribution of NOB. In this study, we determined the distribution and competition of NOB in wastewater nitrification systems where nitrite, organic compounds, and dissolved oxygen concentrations were compositively varied. For the purpose, several compounds of the laboratory-scale nitrificaiion bioreactor and full-scale $A_2O$ wastewater treatment plant and their distribution of NOB were analyzed and compared. The analysis showed that Nitrobacter was the dominant NOB in nitrification bioreactor where average nitrite was maintained at 5 mg-N/L with very low organic concentration in aerobic condition, whereas Nitrospira was the dominant NOB in full-scale $A_2O$ plant where nitrite was maintained very low and organic compounds were maintained relatively high in alternating aerobic-anoxic condition. The result indicates that nitrite concentration is more critical factor than organics and dissolved oxygen which determines the dominant NOB in nitrification system and it is confirmed that Nitrospira and Nitrobacter showed the characteristics of r-strategist and K-strategist, respectively.

Genus Nitrospira와 Nitrobacter는 폐수 질산화 시스템의 대표적인 아질산 산화균으로 알려져 있다. Genus Nitrospira는 아질산 농도가 매우 낮은 조건에서도 이를 효율적으로 활용하는 K-strategists로 알려져 있는 반면에 Nitrobacter 종은 기질소비와 성장이 빠른 r-strategists로 알려져 왔다. 또한 유기물이나 용존산소도 아질산 산화균의 분포에 영향을 주는 것으로 알려져 있다. 본 연구에서는 아질산과 유기물, 용존산소가 복합적으로 작용하는 질산화 시스템에서 아질산 산화균의 분포와 경쟁에 어떻게 영향을 받는지를 검토하였다. 이를 위하여 실험실 규모의 질산화 생물반응기와 질산화-탈질을 수행하는 $A_2O$ 계열의 실제 폐수처리장에서 여러 항목과 두 종류의 아질산 산화균 분포를 측정, 비교하였다. 그 결과 아질산 농도는 평균 5 mg-N/L로 유지되며, 호기조건에서 유기물이 매우 낮게 유지되는 실험실 질산화 생물반응기는 Nitrobacter가, 호기-무산소 조건에서 질산화-탈질이 일어나고 아질산이 거의 없는 상태이며 유기물이 비교적 높게 유지되는 $A_2O$ 폐수처리장은 Nitrospira가 우점종으로 분포하였다. 이것은 여러 인자가 복합적으로 작용하는 상태에서는 아질산 산화균의 분포가 유기물과 용존산소 보다는 아질산 농도가 가장 중요한 인자임을 보여주며 기질 친화도가 낮지만 반응속도가 빠른 Nitrobacter가 r-strategist, genus Nitrospira는 기질친화도가 높은 K-strategist인 특성을 보임을 확인하였다.

Keywords

References

  1. Hellinga, C., Schellen, A., Mulder, J. W., van Loosdrecht, M. C. M., and Heijnen, J. J., 'The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water,' Water Sci. Technol., 37, 135- 142(1998) https://doi.org/10.1016/S0273-1223(98)00281-9
  2. Kuai, L. P. and Verstraete, W., 'Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system,' Appl. Environ. Microbiol., 64, 4500-4506(1998)
  3. Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J. G., Jetten, M. S. M., and Strous, M., 'New concepts of microbial treatment processes for the nitrogen removal in wastewater,' FEMS Microbiol. Rev., 27, 481-492(2003) https://doi.org/10.1016/S0168-6445(03)00039-1
  4. Third, K. A., Paxman, J., Schmid,' M., Strous, M., Jetten, M. S. M., and Cord-Ruwisch, R., 'Enrichment of Anammox from activated sludge and its application in the CANNON process,' Micobial Ecol., 49, 236-244(2005) https://doi.org/10.1007/s00248-004-0186-4
  5. Grady, C. P. L. and Lim, H. C., 'Biological wastewater treatment: Theory and applications,' Marcel Dekker(1980)
  6. Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K. H., Pommering-Roser, A., Koops, H. P., and Wagner, M., 'Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations,' Appl. Environ. Microbiol., 64, 3042-3051 (1998)
  7. Schramm, A., Beer, D., Wagner, M., and Amann, R., 'Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor,' Appl. Environ. Microbiol., 64, 3480 - 3485(1998)
  8. Burrell, P. C., Keller, J., and Blackall, L. L., 'Microbiology of a nitrite-oxidizing bioreactor,' Appl. Environ. Microbiol., 64, 1878 -1883(1998)
  9. Daims, H., Purkhold, U., Bjerrum, L., Arnold, E., Wilderer, P. A, and Wagner, M., 'Nitrification in sequencing biofilm batch reactors: lessons from molecular approaches,' Water Sci. Technol., 43, 9-18(2001a)
  10. Coskuner, G. and Curtis, T. P., 'In situ characterization of nitrifiers in an activated sludge plant: detection of Nitrobacter spp.,' J. Appl. Microbiol., 93, 431-437(2002) https://doi.org/10.1046/j.1365-2672.2002.01715.x
  11. Kelly, J. J., Siripong, S., McCormack, J., Janus, L. R., Urakawa, H., Fantroussi, S. E., Noble, P. A., Sappelsa, L., Rittmann, B. E., and Stahl, D. A, 'DNA microarray detection of nitrifying bacterial 16S rRNA in wastewater treatment plant samples,' Water Res., 39, 3229- 3238 (2005) https://doi.org/10.1016/j.watres.2005.05.044
  12. Kim, D. J., Lee, D. I., and Keller, J., 'Effect of temperature and free ammonia on nitrification and nitrite accumulation in landfill leachate and analysis of its nitrifying bacterial community by FISH,' Biores. Technol., 97, 459-468(2006) https://doi.org/10.1016/j.biortech.2005.03.032
  13. Schramm, A., Beer, D., Gieske, A., and Amann, R., 'Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm,' Environ. Microbiol., 2, 680 - 686(2000) https://doi.org/10.1046/j.1462-2920.2000.00150.x
  14. Schramm, A, Beer, D., Heuvel, J. C., Ottengraf, S., and Amann, R., 'Micro scale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: Quantification by in situ hybridization and the use of microelectrode,' Appl. Environ. Microbiol., 65, 3690 - 3696(1999)
  15. Kim, D. J. and Kim, S. H., 'Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics,' Water Res., 40, 887-894(2006) https://doi.org/10.1016/j.watres.2005.12.023
  16. Bock, E., Wilderer, P. A., and Freitag, A., 'Growth of Nitrobacter in the absence of dissolved oxygen,' Water Res., 22, 245-250(1988) https://doi.org/10.1016/0043-1354(88)90085-1
  17. Prosser, J. I., 'Autotrophic nitrification in bacteria,' Adv. Microbial. PhysioI., 30, 125- 181(1989)
  18. Ehrich, S., Behrens, D., Lebedeva, E., Ludwig, W., and Bock, E., 'A new obligately chemolithotrophic, nitrite oxidizing bacterium, Nitrospira moscoviensis sp. nov. and its phylogenetic relationship,' Arch. Microbiol., 164, 16-23( 1995) https://doi.org/10.1007/BF02568729
  19. Daims, H., Nielsen, J. L., Nielsen, P. H., Schleifer, K. H., and Wangner, M., 'In situ characterization of Nitrospiralike nitrite-oxidizing bacteria active in wastewater treatment plants,' Appl. Environ. Microbiol., 67, 5273-5284(2001b) https://doi.org/10.1128/AEM.67.11.5273-5284.2001
  20. American Public Health Association, 'Standard Methods for the Examination of Water and Wastewater,' 18th ed.,(1992)
  21. Daims, H., Bruhl, A., Amann, R. I., Schleifer, K. H., and Wagner, M., 'The domain specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set,' Sys. Appl. Microbiol., 22, 434 - 444(1999) https://doi.org/10.1016/S0723-2020(99)80053-8
  22. Amann, R. I., Binder, B. J., Olson, R. J., Chisholm, S. W., Devereux, R., and Stahl, D. A., 'Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations,' Appl. Environ. Microbiol., 56, 1919-1925(1990)
  23. Amann, R. I., 'In situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic probes,' In: Akkermans, ADL, van Elsas, JD, de Bruijn, FJ(Eds.) 'Molecular Microbial Ecology Manual,' Kluwer Academic Publications, London, pp. MMEM-3.3.6/lMMEM- 3.3.6/15(1995)
  24. Wagner, M., Rath, G., Koops, H. P., Flood, J., and Amann, R., 'In situ analysis of nitrifying bacteria in sewage treatment plants,' Water Sci. Technol., 34, 237-244( 1996) https://doi.org/10.1016/0273-1223(96)00514-8
  25. Anthonisen, A. C, Loehr, R. C., Prakasam, T. B. S., and Srinath, E. G., 'Inhibition of nitrification by ammonia and nitrous acid,' J. Water Poll. Control. Fed, 48, 835-852( 1976)
  26. Kim, D. J., Chang, J. S., Lee, D. I., Han, D. W., Yoo, I. K., and Cha, G. C., 'Nitrification of high strength ammonia wastewater and nitrite accumulation characteristics,' Water Sci. Technol., 47, 45-51(2003)
  27. Kim, D. J., Kim, T. K., Choi, E. J., Park, W. C., Kim, T. H., Ahn, D. H., Yuan, Z., Blackall, L., and Keller, J., 'Fluorescence in situ hybridization analysis of nitrifiers in piggery wastewater treatment reactors,' Water Sci. Technol., 48, 333 - 340(2004)
  28. Vadivelu, V. M., Yuan, Z., Fux, C., and Keller, J., 'The inhibitory effects of nitrite on the energy generation and growth processes of an enriched Nitrobacter culture,' Proceeding of 4th IWA Activated Sludge Population Dynamics Specialist Conference., pp. 287- 294(2005)
  29. Kim, D. J., Ahn, D. H., and Lee, D. I., 'Effect of free ammonia and dissolved oxygen on nitrification and nitrite accumulation in a biofilm airlift reactor,' Kor. J. Chem. Eng., 22, 85 - 90(2005) https://doi.org/10.1007/BF02701467
  30. Kindaichi, T., Ito, T., and Okabe, S., 'Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography fluorescence in situ hybridization,' Appl. Environ. Microbiol., 70, 1641-1650(2004) https://doi.org/10.1128/AEM.70.3.1641-1650.2004
  31. Laanbroek, H. J., Bodelier, P. L. E., and Gerards, S., 'Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations,' Arch. Microbiol., 161, 156-162(1994) https://doi.org/10.1007/BF00276477