계면활성제 미생물반응기를 이용한 기체상 스타이렌 제어

Control of Gaseous Styrene Using a Bioactive Foam Reactor

  • 신승규 (세종대학교 토목환경공학과) ;
  • 송지현 (세종대학교 토목환경공학과)
  • 발행 : 2006.07.31

초록

휘발성 유기화합물 저감기술인 담체충진형 바이오필터법은 운전이 용이하고 처리비용이 낮다는 장점에도 불구하고, 낮은 운전성능과 막힘현상 등의 문제를 안고 있다. 이에 대한 대안으로 계면활성제로 형성된 거품을 사용해 VOCs의 물질전달율과 분해효율을 향상시킨 미생물 반응기(Bioactive Foam Reactor. BFR)가 제안되었다. 본 연구에서는 VOCs 저감기술로서 BFR의 적용가능성을 확인하기 위하여 styrene를 대상으로 실험실 규모 반응기 실험을 수행하였다. 체류시간 30초에서 미생물이 포함되지 않은 abiotic 실험과 biotic실험을 통해 BFR의 물질전달계수($K_La$)와 기질분해율(k) 값을 선정하였으며, 여타 산기방식의 생물반응조에 비해 BFR 시스템의 물질전달율이 월등히 높음을 확인하였다. 동적부하 변동실험 결과 BFR 시스템은 유입 styrene 농도가 급변하는 상황에서도 안정적인 처리효율을 나타내었다. 또한 BFR의 최대분해능은 109 $g/m^3/hr$으로 높게 나타나, 충진담체를 이용하는 전통적인 바이오필터의 대안 기술로 BFR 시스템을 적용할 수 있을 것으로 판단된다.

Biofilters packed with various materials commonly show problems such as low performance and clogging in a long-term operation. Recently, a bioactive foam reactor(BFR) using surfactants has been suggested to ensure efficient and stable VOCs removal performance. This study was mainly conducted to investigate the feasibility of the BFR system using styrene as a model compound. An abiotic md a biotic tests were conducted to estimate a mass transfer coefficient($K_La$) and a specific substrate utilization coefficient(k) for the BFR, showing the rate of mass transfer was greater in the BFR than in other diffuser systems. A dynamic loading test also indicated that the performance of the BFR was stable under a shock loading condition. Furthermore, the maximum elimination capacity of the BFR was determined to be 109 $g/m^3/hr$ for styrene, which was much higher than those for biofilter systems generally reported in the literature. Overall, the experimental results suggest that the BFR be a potential alternative to the conventional packed-bed biofilters.

키워드

참고문헌

  1. Van Groenestijin, J. W. and Hesselink, P. G. M., 'Biotechniques for air pollution control', Biodegradation, 4, 283-301(1993) https://doi.org/10.1007/BF00695975
  2. Devinny, J. S., Deshusses, M. A., and Webster, T. S., Biofiltration for air pollution control, Lewis Publishers (1999)
  3. Kennes, C. and Veiga, M. C., Bioreactors for waste gas treatment, Kluwer Academic Publishers(2001)
  4. Kang, E. and Deshusses, M. A., 'Continuous operation of foamed emulsion bioreactor treating toluene vaper,' Biotechnol. Bioeng., 92, 364-371(2005) https://doi.org/10.1002/bit.20619
  5. Kang, E. and Deshusses, M. A., 'Development of foamed emulsion bioreactor for air pollution control,' Biotechnol. Bioeng., 84, 240-244(2003) https://doi.org/10.1002/bit.10767
  6. Muligan, C. N., Yong. R. N., and Gibbs. B. F., 'Surfactant-enhanced remediation of contaminated soil: a review,' Eng. Geol., 60, 371-380(2001) https://doi.org/10.1016/S0013-7952(00)00117-4
  7. Huang, H. L. and Lee, G. Whei-May., 'Enhanced naphthanlene solubility in the presence of sodium dodecyl sulfate: effect of critical micelle concentration,' Chemosphere, 44, 963-972(2001) https://doi.org/10.1016/S0045-6535(00)00367-2
  8. Cherry, R. S. and Thomapson, D. N., 'The shift from growth to nutrient-limited maintenance kinetics during acclimation of a biofilter,' Biotechnol. Bioeng., 56, 330- 339(1997) https://doi.org/10.1002/(SICI)1097-0290(19971105)56:3<330::AID-BIT11>3.0.CO;2-K
  9. Ridgway, H. F., Safarik, J., Phioos, D., Carl, P., and Clark, D., 'Identification and catabolic activity of wellderived gasoline-degradation bacterial from a contaminated aquifer,' Appl. Environ. Microbiol., 56, 3565-3575 (1990)
  10. Bielefeldt, A. R. and Stensel, H. D., 'Treating VOC-contaminated gases in activated sludge: mechanistic model to evaluate design and performance,' 33, 3234-3240 (1999) https://doi.org/10.1021/es990169g
  11. Lu, C., Lin, M. R., and Lin, J., 'Removal of Styrene Vapor from Waste Gases by a Trickle-Bed Air Biofilter,' J. Hazard. Materials., 82, 233-245(2001) https://doi.org/10.1016/S0304-3894(00)00347-2
  12. Pol, A., FJJ V. H., HJM, O. C., and Drift, C., 'Styrene Removal from Waste Gas with a Bacterial Biotrickling Filter,' Biotechnol. Letters., 20, 407-410(1998) https://doi.org/10.1023/A:1023438517772
  13. Sorial, G. A., Smith, F. L., Suidan, M. T., Pandit, A., Biswas, P., and Brenner, R. C., 'Evaluation of tricklebed air biofilter performance for styrene removal,' Water Res., 32, 1593-1603(1998) https://doi.org/10.1016/S0043-1354(97)00355-2
  14. Cox, H. H. J., Moerman, R. E., van Baalen, S., van Heiningen, W. N. M., Doddema, H. J., and Harder, W., 'Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei,' Biotechnol. Bioeng., 53, 259-266(1997) https://doi.org/10.1002/(SICI)1097-0290(19970205)53:3<259::AID-BIT3>3.0.CO;2-H
  15. Arnold, M., Reittu, A., von Wright, A., Martikainen, P. J., and Suihko, M-L., 'Bacterial degradation of styrene in waste gases using a peat filter,' Appl. Microbiol. Biotechnol., 48, 738-744(1997) https://doi.org/10.1007/s002530051126
  16. Paca, J., Koutsky, B., Maryska, M., and Halecky, M., 'Styrene degradation along the bed hight of perlite biofilter,' J. Chem. Technol. Biotechnol., 76, 873-878(2001) https://doi.org/10.1002/jctb.461
  17. Zilli, M., Converti, A., and Felice, R. D., 'Microkinetic and quantitative microbial investigation on a bench-scale biofilter treating styrene-polluted gaseous streams,' Biotechnol. Bioeng., 83, 29-38(2003) https://doi.org/10.1002/bit.10640