Influence of Water Glass on Strength of Fly Ash-Cements

플라이 애쉬-시멘트의 강도특성에 대한 물유리의 영향

  • Park, Sang-Sook (Division of Civil and Environmental. Engineering, Sunchon National University) ;
  • Kang, Hwa-Young (Department of Civil and Environment, Hanyeong Technical College) ;
  • Han, Sang-Ho (Division of Civil and Environmental. Engineering, Sunchon National University) ;
  • Rim, Yu-Sup (Department of Bio-environmentla Chemistry, Sunchon National University) ;
  • Kim, Dong-Kuk (Division of Civil and Environmental. Engineering, Sunchon National University) ;
  • Kim, Se-Hoon (Division of Environmental and Chemical Engineering, Chonbuk National University)
  • 박상숙 (순천대학교 토목.환경공학부) ;
  • 강화영 (한영대학 토목환경과) ;
  • 한상호 (순천대학교 토목.환경공학부) ;
  • 임요섭 (순천대학교 생물환경화학과) ;
  • 김동국 (순천대학교 토목.환경공학부) ;
  • 김세훈 (전북대학교 환경.화학공학부)
  • Published : 2006.06.30

Abstract

The compressive strength of a paste composed of a low-calcium Class F fly ash and alkaline activator solutions was investigated. These activator solutions, made with sodium hydroxide, water glass and water, have a very high $OH^-$ concentration. The composition of alkaline activator solution and temperature have been shown to notably influence the development of the compressive strength of the fly ash-cements paste. Compressive strength of 50 MPa could be achieved by curing of the fly ash at $60^{\circ}C$ for 48 hrs or $85^{\circ}C$ for 24 hrs. This study presented the optimum mixing ratio of Class F fly ash/sodium hydroxide/water glass as 25:8:2 in weight basis, and activator/fly ash as 0.6/1.0 for high strength paste.

칼슘함량이 낮은 F급 플라이 애쉬와 알칼리 활성화 용액으로 구성된 페이스트의 압축강도 특성에 대한 연구를 수행하였다. 수산화나트륨과 물유리 그리고 물을 혼합하여 제조한 이들 활성화 용액은 매우 높은 $OH^-$ 농도를 가지고 있다. 알칼리 활성화 용액의 조성과 온도는 플라이 애쉬-시멘트 페이스트의 압축강도 발현에 대한 현저한 영향 인자임을 보여주었다. 50 MPa 이상의 압축강도는 플라이 애쉬를 각각 $60^{\circ}C$에서 48시간과 $85^{\circ}C$에서 24시간 양생하여 얻었다. 본 연구결과, F급 플라이 애쉬/NaOH/물유리의 무게 비율 25:8:2와 활성화 용액/플라이 애쉬의 무게 비율 0.6/1.0은 높은 강도를 가진 페이스트를 위한 적정 혼합비율로 나타났다.

Keywords

References

  1. Cochrane, J. W. and Boyd, T. J., 'Benification of Fly Ash by Carbon Burnout,' In Proc. 10th Ash Use Symp., Jan.(1993)
  2. Wang, P., Chem, Z., and Scholz, H., 'Characteristics of morphology of the interface between cement paste and fly ash,' J. Chin Ceram Soc., 25(4), 475-749(1997)
  3. Ma, W., Liu, C., Brown, P. W., and Komameni, S., 'Pore structures of fly ashes activated by $Ca(OH)_2\;and\; CaSO_4.2H_2O$,' Cem Concr Res., 25, 417-425(1995) https://doi.org/10.1016/0008-8846(95)00027-5
  4. Li, D., Chen, Y., Shen, J., Su, J. and Wu, X. 'The influence of alkalinity on activation and microstructure of fly ash,' Cem Concr Res., 30, 881-886(2000) https://doi.org/10.1016/S0008-8846(00)00252-0
  5. Palomo, A, Grutzeck, M. W., and Blanco, M. T., 'Alkali-activated fly ashes-A Cement for the furture,' Cement and Concrete Research, 29, 1323 -1329(1999) https://doi.org/10.1016/S0008-8846(98)00243-9
  6. Fruuy, A. L. A. and Bejen, J. M., Cem Concr Res., 19, 235-246(1989) https://doi.org/10.1016/0008-8846(89)90088-4
  7. Zhaohui, X. and Yunping, X., 'Hardening mechanism of an alkaline-activated class F fly ash,' Cem Concr Res., 31, 1245-1249(2001) https://doi.org/10.1016/S0008-8846(01)00571-3
  8. 박상숙, 강화영, 한상호, 강희복, 'F급 플라이 애쉬-모르타르의 강도발현에 대한 NaOH과 $Na_2SiO_3.9H_2O$ 첨가의 영향,' 한국구조물진단학회지, 9(4), 261-269(2005)
  9. Katz, A, 'Microscopic Study of Alkali Activated Fly Ash,' Cem and Concr Res., 28, 197-208(1998) https://doi.org/10.1016/S0008-8846(97)00271-8
  10. Puertas, F. and Fernandez-Jimenez, A, 'Mineralogical and Microstructural Characterisation of Alkali-activated Fly Ash/Slag Pastes,' Cement & Concrete Composites, 25, 287-292(2003) https://doi.org/10.1016/S0958-9465(02)00059-8
  11. Kejin W., Surendra, P. S., and Alexander, M., 'Effects of Curing Temperature and NaOH Addition on Hydration and Strength Development of Clinker-free CKD-Fly Ash Binders,' Cement and Concrete Research, 34, 299-309(2004) https://doi.org/10.1016/j.cemconres.2003.08.003
  12. Van Jaarsveld, J. G. S. and Van Deventer, J. S. J., 'The Potential Use of Geopolymeric Materials to Immobilize Toxic Metals: Part I. Theory and Applications,' Miner. Eng., 10, 659-669(1997) https://doi.org/10.1016/S0892-6875(97)00046-0