부채꼴방전 플라즈마 개질을 이용한 프로판으로부터의 합성가스 생산

SynGas Production from Propane using GlidArc Plasma Reforming

  • 발행 : 2006.03.31

초록

본 논문의 목적은 부채꼴방전(GlidArc) 플라즈마 개질을 이용하여 프로판으로부터 카본블랙의 형성이 없는 합성가스 생산을 위한 개질특성과 최적 운전조건을 연구하였다. 또한 수소 생산 및 프로판 전환율을 항상시키기 위해 반응기 내의 촉매반응 영역에 13 wt%의 니켈촉매를 충진하여 수증기 몰 비, 이산화탄소 몰 비, 입력 전력, 주입 유량 변화의 변수별 연구를 수행하였다. 그 결과, 수증기 몰 비, 이산화탄소 몰 비, 입력 전력, 주입 유량이 각각 1.86, 0.48, 1.37 kW, 14 L/min일 때 프로판 전환율이 62.6%로 최적이었다. 위의 조건에서 합성가스의 건가스 기준에 농도는 $H_2\;44.4%,\;CO\;18.2%,\;CH_4\;11.2%,\;C_2H_2\;2.0%,\;C_3H_6\;1.6%,\;C_2H_4\;0.6%,\;C_3H_4$ 0.4%이며, 이산화탄소 전환율은 29.2%, 합성가스 내의 $H_2/CO$ 농도 비는 2.4이다.

The purpose of this paper was to investigate the reforming characteristics and optimum operating condition of the GlidArc-assisted $C_3H_8$ reforming reaction for the synthesis gas(SynGas) production without formation of carbon black from propane using GildArc plasma reforming. Also, in order to increase the hydrogen production and the propane conversion rate, 13 wt % nickel catalyst was filled into the catalytic reactor and parametric screening studies were conducted, in which there were the variations of vapor mole ratio$(H_2O/C_3H_8),\;CO_2$ mole ratio($CO_2/C_3H_8$), input power and injection flow rate. When the variations of vapor mole ratio, $CO_2$ mole ratio, input power and injection flow rate were 1.86, 0.48, 1.37 kW and 14 L/min, respectively, the conversion rate of the propane reached its most optimal condition, or 62.6%. Under the condition mentioned above, the dry basic concentrations of the SynGas were $H_2\;44.4%,\;CO\;18.2%,\;CH_4\;11.2%,\;C_2H_2\;2.0%,\;C_3H_6\;1.6%,\;C_2H_4\;0.6%\;and\;C_3H_4$ 0.4%. The conversion rate of carbon dioxide was 29.2% and the concentration ratio of hydrogen to carbon monoxide($H_2/CO$) in the SynGas was 2.4.

키워드

참고문헌

  1. Pefla, M. A., Gomez, J. P., and Fierro, J. L., 'New catalytic routes for syngas and hydrogen production,' Appl. Catal. A, 144, 7-57(1996) https://doi.org/10.1016/0926-860X(96)00108-1
  2. Beckhaus, P., Heinzel, A., Mathiak, J., and Roes, J., 'Dynamic of $H_2$ production by steam reforming,' J. Power Sources, 127, 294-299(2004) https://doi.org/10.1016/j.jpowsour.2003.09.026
  3. Tsang, S. C, Claridge, J. B., and Green, M. L. H., 'Recent advanced in the conversion for methane to synthesis gas,' Catal. Today, 23, 3-15(1995) https://doi.org/10.1016/0920-5861(94)00080-L
  4. Hagh, B. F., 'Optimization of autothermal reactor for maximum hydrogen production,' Int. J. Hydrogen Engergy, 28, 1369-1377(2003) https://doi.org/10.1016/S0360-3199(02)00292-6
  5. Deminsky, M., Jivotov, V., Potapkin, B., and Rusanov, V., 'Plasma-assisted production of hydrogen from hydrocarbons,' Pure Appl. Chem., 74, 413-418(2002) https://doi.org/10.1351/pac200274030413
  6. Czernichowski, A., 'GlidArc Assisted Preparation of the Synthesis Gas from Natural and Waste Hydrocarbons Gases,' Oil & Gas Science and Technoloy-Rev. IFP, 56, 181-198(2001) https://doi.org/10.2516/ogst:2001018
  7. Czernichowski, A. and Czernichowski, P., 'Conversion of hydrocarbons assisted by gliding electric arcs in the presence of water vapor and/or carbon dioxide,' USA Patent 5,993,761(1999)
  8. Barsan, M. M. and Thyrion, F. C., 'Kinetic study of oxidative dehydrogenation of propane over Ni-CO molyb-date catalyst,' Catalysis Today, 81, 159-170(2003) https://doi.org/10.1016/S0920-5861(03)00109-3