Characterization of Diethyl Phthalate(DEP) Removal using Ozone, UV, and Ozone/UV Combined Processes

오존, UV, 오존/UV 혼합 공정을 이용한 Diethyl Phthalate(DEP)의 제거특성 연구

  • Jung, Yeon-Jung (Department of Environmental Engineering, Yonsei University, YIEST) ;
  • Oh, Byung-Soo (Department of Environmental Engineering, Yonsei University, YIEST) ;
  • Kang, Joon-Wun (Department of Environmental Engineering, Yonsei University, YIEST)
  • Published : 2006.02.28

Abstract

Three candidate processes(ozone alone, UV alone and ozone/UV combined processes) were evaluated for the removal of diethyl phthalate(DEP). Of the candidates, the ozone/UV process showed the highest removal efficiency of DEP. To elucidate a major oxidant for DEP oxidation in the ozone/UV process, the effects of pH and hydroxyl radical($OH^{\circ}$) scavenger were investigated. As a result, it was found that $OH^{\circ}$ plays a important role for DEP elimination. Meanwhile, the direct reaction between ozone and DEP was negligible. Observing the pseudo first-order rate of DEP removal in ozone alone and ozone/UV processes, the different pattern was obtained from two processes. The ozone/UV process was well plotted following the pseudo first-order. but in the ozone alone process the rate was divided into fast and slow phases. DEP degradation characteristics in ozone alone and ozone/UV was also investigated by observing the HPLC spectrum. We detected unknown compounds that were guessed to DEP byproducts and observed the formation and disappearance of the unknown compounds according to reaction time. Observing of high removal of TOC in ozone/UV combined process, it was found that DEP and DEP byproducts are completely oxidized by ozone/UV combined process.

본 연구는 오존 단독, UV 단독 및 오존/UV 혼합 공정을 이용하여 DEP의 제거 특성을 알아보고자 수행되었다. 실험 결과로서, 오존/UV 공정에서 가장 높은 제거 효율을 나타냈다. 오존 및 오존/UV 공정에서 DEP의 분해 경로를 파악하기 위해서 pH 변화 및 OH 라디칼($OH^{\circ}$) scavenger 첨가 유무에 따른 제거 정도를 비교하였다. 그 결과, DEP 분해 시 $OH^{\circ}$과의 반응이 주된 반응이며, 오존에 의한 직접 산화 반응 및 UV에 의한 광분해 반응은 무시할 정도로 작았다. 오존 및 오존/UV 공정에서 DEP의 의사일차속도상수를 비교하였을 때, 오존/UV 공정은 일차속도에 잘 일치한 반면 오존 단독 공정에서는 일차속도로 제거되는 경향이 초기에 빠르고 일정한 반응시간 이후에 느려지는 두 영역으로 나뉘어 나타났다. 오존 및 오존/UV 긍정에 의해 생성되는 DEP 산화 부산물을 간접적으로 확인하기 위해 HPLC 스펙트럼을 조사한 결과 미지의 물질이 검출되었으며, 반응시간에 따라 이 물질이 생성되다가 감소하는 일정한 경향을 보였다. 또한, 오존/UV 혼합공정에서 높은 TOC 제거율을 나타내 DEP 및 DEP 산화부산물까지 완전 산화됨을 확인하였다.

Keywords

References

  1. Singer, P. C., Formation and control of disinfection byproducts in drinking water, 1st ed., Am. Water Works Assoc., Denver, pp. 170 - 180( 1999)
  2. Bruno, L., David, A. R., and Deborah, R. B., Ozone in Water Treatment, The United States of America: Lewis Publishers, Colorado, pp. 12(1991)
  3. 강준원.'고도산화기술(AOT: Advanced oxidation technology) 의 수 처리응용,'화학세계, 대한화학회지,39(6), 35 -42(1999)
  4. Glaze, W. H., Kang, J, W., and Chapin, D. H., 'The chemistry of water treatment processes involving ozone, hydrogen peroxide, and ultraviolet radiation,' Ozone Sci. Eng., 9(4), 335-352(1987) https://doi.org/10.1080/01919518708552148
  5. Amdur, Casarett, and Doul, Toxicology, The science of poisons, pp. 499(1991)
  6. 김경숙, 오병수, 강준원, 한상국, 정봉철, 안규홍, '팔당 상수원 내 미량 유해물질의 조사 및 관리 방안' 한국물환경학회지, 19(2), 183 - 191(2003)
  7. 김은주, 'Di-2-ethylhexyl phthalate의 수서 생태계 먹이 사슬을 통한 생물 축적 및 거동 예측,' 한국환경보건학회지, 30(3), 264-271(2004)
  8. Staples, C. A., Peterson, R. D., Parkerton, T. F., and Adams, W. J., 'The environmental fate of phthalate esters: a literature review,' Chemosphere, 35(4), 667-749(1997) https://doi.org/10.1016/S0045-6535(97)00195-1
  9. Kawaguchi, H., 'Photodecomposition of bis-2-ethylhexyl phthalate,' Chemosphere, 28(8), 1489-1493(1994) https://doi.org/10.1016/0045-6535(94)90243-7
  10. Jianlong, W., Ping, L., and Yi, Q., 'Biodegradation of phthalic acid esters by acclimated activated sludge,' Environ. Int., 22(6), 737 -741 (1996) https://doi.org/10.1016/S0160-4120(96)00065-7
  11. Madsen, P., Thyme, J., Henriksen, K., Moldrup, P., and Roslev, P., 'Kinetics of di-(2-ethylhexyl) phthalate mineralization in sludge amended soil,' Environ. Sci. Technol., 33(15), 2601-2606(1999) https://doi.org/10.1021/es981015o
  12. O'Conner, O., Rivera, M., and Young, L., 'Toxicity and biodegradation of phthalic acid esters under methonogenic conditions,' Environ. Toxicol. Chem., 8(7), 567-576 ( 1989)
  13. Mailhot, G., Sarakha, M., Lavedrine, B. Caceres, J., and Malato, S., 'Fe(III)-solar light induced degradation of diethyl phthalate(DEP) in aqueous solutions,' Chemosphere, 49(7), 525 - 532(2002) https://doi.org/10.1016/S0045-6535(02)00418-6
  14. Yao, C. C. D. and Haag, W. R., 'Rate constants for direct reactions of ozone with several drinking water contaminants,' Water Res., 25(7), 761-773(1991) https://doi.org/10.1016/0043-1354(91)90155-J
  15. Staehelln, J. and Hoigne, J., 'Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions,' Environ. Sci. Technol., 19(12), 1206 -1213(1985) https://doi.org/10.1021/es00142a012
  16. Balabanovich, A. I. and Schnabel, W., 'On the photolysis of phthalic acid dimethyl and diethyl ester: a product analysis study,' J. Photochem. Photobio. A: Chem., 113(11), 145 -153(1998) https://doi.org/10.1016/S1010-6030(97)00334-1
  17. Legube, B., Guyon, S., Sugimitsu, H., and Dore, M., 'Ozonation of some aromatic compounds in aqueous solution: styrene, benzaldehyde, naphthalene, diethyl phthalate, ethyl and chloro benzenes,' Ozone Sci. Eng., 5, 151-170(1983) https://doi.org/10.1080/01919518308550981