DOI QR코드

DOI QR Code

Adenovirus-mediated Expression of Both Antisense Ornithine Decarboxylase and S-adenosylmethionine Decarboxylase Induces G1 Arrest in HT-29 Cells

  • Gong, Lei (Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University) ;
  • Jiang, Chunying (Department of Colon Proctology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine) ;
  • Zhang, Bing (Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University) ;
  • Hu, Haiyan (Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University) ;
  • Wang, Wei (Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University) ;
  • Liu, Xianxi (Institute of Biochemistry and Molecular Biology, School of Medicine, Shandong University)
  • Received : 2006.05.09
  • Accepted : 2006.07.21
  • Published : 2006.11.30

Abstract

To evaluated the effect of recombinant adenovirus Ad-ODC-AdoMetDCas which can simultaneously express both antisense ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) on cell cycle distribution in colorectal cancer cell and investigated underlying regulatory responses, human colorectal cancer cells HT-29 were cultured in RPMI 1640 medium and infected with Ad-ODC-AdoMetDCas. Cell cycle progression was detected by flow cytometry analysis. The expression levels of cell cycle regulated proteins were measured by Western blot analysis. The mRNA level of cyclin D1 was measured by RT-PCR. And a luciferase reporter plasmid of cyclin D1 promoter was constructed to observe the effect of Ad-ODC-AdoMetDCas on cyclin D1 promoter activity. The results showed that recombinant adenovirus Ad-ODC-AdoMetDCas significantly induced $G_1$ arrest, decreased levels of cyclin D1 protein and mRNA and suppressed the promoter activity. Ad-ODC-AdoMetDCas also inhibited nuclear translocation of $\beta$-catenin. In conclusion, downregulation of ODC and AdoMetDC mediated by Ad-ODC-AdoMetDCas transfection induces $G_1$ arrest in HT-29 cells and the arrest was associated with suppression of cyclin D1 expression and inhibition of $\beta$-catenin nuclear translocation. As a new anticancer reagent, the recombinant adenovirus Ad-ODC-AdoMetDCas holds promising hope for the therapy of colorectal cancers.

Keywords

References

  1. Aust, D. E., Terdiman, J. P., Willenbucher, R. F., Chang C. G., Molinaro-Clark, A., Baretton, G. B., Loehrs, U. and Waldman, F. M. (2002) The APC/$\beta$-catenin pathway in ulcerative colitisrelated colorectal carcinomas. Cancer 94, 1421-1427 https://doi.org/10.1002/cncr.10334
  2. Basu, H. S., Wright, W. D., Deen, D. F., Roti-Roti, J. and Marton, L. J. (1993) Treatment with a polyamine analog alters DNA matrix association in HeLa cell nuclei: a nucleoid halo assay. Biochemistry 32, 4073-4076 https://doi.org/10.1021/bi00066a031
  3. Faaland, C. A., Thomas, T. J., Balabhadrapathruni, S., Langer, T., Mian, S., Shirahata, A., Gallo, M. A. and Thomas, T. (2000) Molecular correlates of the action of bis(ethyl)polyamines in breast cancer cell growth inhibition and apoptosis. Biochem. Cell Biol. 78, 415-426 https://doi.org/10.1139/bcb-78-4-415
  4. Fredlund, J., Johansson, M. C., Dahlberg, E. and Oredsson, S. M. (1995) Ornithine decarboxylase and S-adenisylmethione decarboxylase expression during the cell cycle of chinese hamster ovary cells. Exp. Cell Res. 216, 86-92 https://doi.org/10.1006/excr.1995.1011
  5. Guo, X., Rao, J., Liu, L., Rizvi, M., Turner, D. J. and Wang, J. Y. (2002) Polyamines regulate a-catenin tyrosine phosphorylation via $Ca^{2+}$ during intestinal epithelial cell migration. Am. J. Physiol. Cell Physiol. 283, 722-734 https://doi.org/10.1152/ajpcell.00054.2002
  6. Gerner, E. W. and Meyskens, F. L. Jr. (2004) Polyamines and cancer: old molecules, new understanding. Nat. Rev. Cancer 4, 781-792 https://doi.org/10.1038/nrc1454
  7. Hillary, R. A. and Pegg, A. E. (2003) Decarboxylases involved polyamine biosynthesis and their inactivation by nitric oxide. Biochem. Biophys. Acta 1647, 161-166
  8. Hu, X., Washington, S., Verderame, M. F., Demers, L. M. Mauger, D. and Manni, A. (2004) Biological activity of the Sadenosylmethionine decarboxylase inhibitor SAM486A in human breast cancer cells in vitro and in vivo. Int. J. Oncol. 25, 1831-1838
  9. Janne, J., Alhonen L, Pietila M, and Keinanen, T. A. (2004) Genetic approaches to the cellular functions of polyamines in mammals. Eur. J. Biochem. 271, 877-894 https://doi.org/10.1111/j.1432-1033.2004.04009.x
  10. Jiang, A. L., Zhang, P. J., Hu, X. Y., He, M. Y., Chen, W. W., Kong, F. and Zhang, J. Y. (2005) Identification of binding protein to a 30bp-negative regulation region upstream of NKX 3.1 gene. J. Shandong Univ. (Health Sci.) 43, 375-378
  11. Li, M., Ren, S., Tilli, M. T., Flaws, J. A., Lubet, R., Grubbs, C. J. and Furth, P. A. (2003) Chemoprevention of mammary carcinogenesis in a transgenic mouse model by $\alpha$- difluoromethylornithine (DFMO) in the diet is associated with decreased cyclin D1 activity. Oncogene 22, 2568-2572 https://doi.org/10.1038/sj.onc.1206314
  12. Manni, A., Badger, B., Grove, R., Grove, R., Kunselman, S. and Demers, L. (1995) Isolation and characterization of human breast cancer cells overexpressing S-adenosylmethionine decarboxylase. Cancer Lett. 95, 23-28 https://doi.org/10.1016/0304-3835(95)03860-Y
  13. Mayeur, C., Veuillet, G., Michaud, M., Raul, F., Blottiere, H. M. and Blachier, F. (2005) Effects of agmatine accumulation in human colon carcinoma cells on polyamine metabolism, DNA synthesis and the cell cycle. Biochim. Biophys. Acta 1745, 111-123 https://doi.org/10.1016/j.bbamcr.2004.12.004
  14. Milovica, V., Turchanowa, L., Khomutov, A. R., Khonutov, R. M., Caspary, W. F. and Stein, J. (2001) Hydroxylamine-containing inhibitors of polyamine biosynthesis and impairment of colon cancer cell growth. Biochem. Pharmacol. 61, 199-206 https://doi.org/10.1016/S0006-2952(00)00549-9
  15. Morin, P. J. (1999) $\beta$-Catenin signaling and cancer. Bioessays 21, 1021-1030 https://doi.org/10.1002/(SICI)1521-1878(199912)22:1<1021::AID-BIES6>3.0.CO;2-P
  16. Coqueret, O. (2002) Linking cyclins to transcriptional control. Gene 299, 35-55 https://doi.org/10.1016/S0378-1119(02)01055-7
  17. Ordesson, S. M. (2003) Polyamine dependence of normal cellcycle progression. Biochem. Soc. Trans. 31, 366-370 https://doi.org/10.1042/BST0310366
  18. Paridaens, R., Uges, D. R., Barbet, N., Choi, L., Seeghers, M., van der Graaf, W. T., Groen, H. J., Dumez, H., Buuren, I. V., Muskiet, F., Capdeville, R., Oosterom, A. T. and de Vries, E. G. (2000) A phase I study of a new polyamine biosynthesis inhibitor, SAM486A, in cancer patients with solid tumours. Br. J. Cancer 83, 594-601 https://doi.org/10.1054/bjoc.2000.1305
  19. Roberts, R. W. and Crothers, D. M. (1992) Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463-1465 https://doi.org/10.1126/science.1279808
  20. Seile, N., Atanassov, C. L. and Raul, F. (1998) Polyamine metabolism as target for cancer chemoprevention. Int. J. Oncol. 13, 993-1006
  21. Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R. and Ben-Ze'ev, A. (1999) The cyclin D1 gene is a target of the â-catenin/LEF-1 pathway. Proc. Natl. Acad. Sci. 96, 5522-5527 https://doi.org/10.1073/pnas.96.10.5522
  22. Thomas, T. J., Shah, N., Faaland, C. A., Gallo, M. A., Yurkow, E. and Satyaswaroop, P. G. (1997) Anti-tumor effects of a bis(benzyl)spermine analog on MCF-7 breast cancer cells in culture and in nude mice xenografts. Oncol. Rep. 4, 5-13
  23. Thomas, T. and Thomas, T. J. (2003) Polyamine metabolism and cancer. J. Cell Mol. Med. 7, 113-126 https://doi.org/10.1111/j.1582-4934.2003.tb00210.x
  24. Tetsu, O. and McCormick, F. (1999) Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426 https://doi.org/10.1038/18884
  25. Wallace, H. M., Fraser, A. V. and Hughes, A. (2003a) A perspective of polyamine metabolism. Biochem. J. 376, 1-14 https://doi.org/10.1042/BJ20031327
  26. Wallace, H. M. and Fraser, A. V. (2003b) Polyamine analogues as anticancer drugs. Biochem. Soc. Trans. 31, 393-396 https://doi.org/10.1042/BST0310393
  27. Wang, J. Y. (2005) Polyamines regulate expression of E-cadherin and play an important role in control of intestinal epithelial barrier function. Inflammopharmacology 13, 91-101 https://doi.org/10.1163/156856005774423890
  28. Wong, N. A., Morris, R. G., McCondochie, A., Bader, S., Jodrell, D. I. and Harrison, D. J. (2002) Cyclin D1 overexpression in colorectal carcinoma in vivo is dependent on b-catenin protein dysregulation, but not k-ras mutation. J. Pathol. 197, 128-135 https://doi.org/10.1002/path.1113
  29. Yerlikaya, A. (2004) Polyamines and S-adenosylmethionine decarboxylase. Turk. J. Biochem. 29, 208-214
  30. Zhang, B., Liu, X. X., Zhang, Y., Jiang, C. Y., Hu, H. Y., Gong, L., Liu, M. and Teng Q. S. (2006) Adenovirus-mediated expression of both antisense ODC and AdoMetDC inhibited colorectal cancer cell growth in vitro. Acta Phamacol. Sin. 27, 353-359 https://doi.org/10.1111/j.1745-7254.2006.00268.x

Cited by

  1. Down-regulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells vol.42, pp.11, 2009, https://doi.org/10.5483/BMBRep.2009.42.11.725
  2. Targeted antitumor effect induced by hTERT promoter mediated ODC antisense adenovirus vol.37, pp.7, 2010, https://doi.org/10.1007/s11033-009-9908-5
  3. Suppression of CDK2 expression by siRNA induces cell cycle arrest and cell proliferation inhibition in human cancer cells vol.43, pp.4, 2010, https://doi.org/10.5483/BMBRep.2010.43.4.291