참고문헌
- Azari, F., Hosseinkhani, S. and Nemat-Gorgani, M. (2001) Use of reversible denaturation for adsorptive immobilization of Urease. Appl. Biochem. Biotechnol. 94, 265-277. https://doi.org/10.1385/ABAB:94:3:265
- Azari, F. and Nemat-Gorgani, M. (1999) Reversible denaturation of carbonic anhydrase provides a method for its adsorptive immobilization. Biotechnol. Bioeng. 62, 193-197. https://doi.org/10.1002/(SICI)1097-0290(19990120)62:2<193::AID-BIT9>3.0.CO;2-H
- Cleland, J. L. and Wang D. I. C. (1990) Refolding and aggregation of bovine carbonic anhydrase B: Quasi-elastic light scattering analysis. Biochemistry 29, 11072-11078. https://doi.org/10.1021/bi00502a009
- Coleman, J. E. (1968) Carbonic anhydrase-azosulfonamide complexes. J. Biol. Chem. 243, 4574-4587.
- d'Amico, S., Marx, J. C., Gerday, C. and Feller, G. (2003) Activity-stability relationships in extremophilic enzymes. J. Biol. Chem. 278, 7891-7896. https://doi.org/10.1074/jbc.M212508200
- Eftink, M. R. and Ghiron, C. A. (1976) Exposure of tryptophanyl residues and protein dynamics. Biochemistry 16, 5546-5551. https://doi.org/10.1021/bi00644a024
- Hakansson, K., Carlsson, M., Svensson, L. A. and Liljas, A. (1992) Structure of native and apo carbonic anhydrase II and structure of some of its anion-ligand complexes. J. Mol. Biol. 227, 1192-1204. https://doi.org/10.1016/0022-2836(92)90531-N
- Henkens, R. W. and Sturtevant, J. M. (1968) The kinetics of the binding of zinc (II) by apocarbonic anhydrase. J. AM. Chem. Soc. 90, 2669-2676. https://doi.org/10.1021/ja01012a036
- Henkens, R. W., Watt, G. D. and Sturtevant, J. M. (1969) The enthalpy of binding of various transition metal ions to bovine apocarbonic anhydrase. Biochemistry 8, 1874-1878. https://doi.org/10.1021/bi00833a015
- Holm, R. H., Kennepohl, P. and Solomon, E. I. (1996) Structural and functional aspects of metal sites in biology. Chem.Rev. 96, 2239-2314. https://doi.org/10.1021/cr9500390
- Hosseinkhani, S. and Nemat-Gorgani, M. (2003) Partial unfolding of carbonic anhydrase provides a method for its immobilization on hydrophobic adsorbents and protects it against irreversible thermoinactivation. Enzyme. Microb. Technol. 33, 179-184. https://doi.org/10.1016/S0141-0229(03)00097-8
- Hosseinkhani, S., Szittner, R., Nemat-Gorgani, M. and Meighen, E. (2003) Adsorptive immobilization of bacterial luciferases on alkyl-substituted Sepharose 4B. Enzyme Microb.Technol. 32, 186-193. https://doi.org/10.1016/S0141-0229(02)00282-X
- Hughson, F. M., Barrick, D. and Baldwin, R. L. (1991) Probing the stability of a partly folded apomyoglobin intermediate by site-directed mutagenesis. Biochemistry 30, 4113-4118. https://doi.org/10.1021/bi00231a001
- Hunt, J. A., Ahmed, M. and Fierke, C. A. (1999) Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues. Biochemistry 38, 9054-9062. https://doi.org/10.1021/bi9900166
- Ikai, A., Tanaka, S. and Noda, H. (1978) Reactivation kinetics of guanidine-denatured bovine carbonic anhydrase B. Arch. Biochem. Biophys. 190, 39-45. https://doi.org/10.1016/0003-9861(78)90251-5
- Lindberg, M. J., Tibell, L. and Oliveberg, M. (2002) Common denominator of Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis: Decreased stability of the apo state. P.N.A.S. 99, 16607-16612. https://doi.org/10.1073/pnas.262527099
- Lindskog, S., Henderson, L. E., Kannan, K. K., Liljas, A., Nyman, P. O. and Strandberg, B. (1971) Carbonic anhydrase; in The Enzymes, Boyer, P. D. (ed.), pp. 587-665, Academic Press, New York, USA.
- Lindskog, S. and Malmstrom, G. (1960) Reversible dissociation of zinc in bovine carbonic anhydrase. Biochem. Biophys. Res. Commun. 2, 213-217. https://doi.org/10.1016/0006-291X(60)90015-2
- Lindskog, S. and Malmstrom, B.G. (1962) Metal binding and catalytic activity in bovine carbonic anhydrase. J. Biol. Chem. 237, 1129-1137.
- Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951) Protein measurement with folin phenol reagent. J. Biol. Chem. 193, 265-275.
- McLachlan, K. L. and Crumbliss, A. L. (1991) The effect of an applied potential activity of carbonic anhydrase immobilized on graphite rods. Biotechnol. Bioeng. 37, 491-496. https://doi.org/10.1002/bit.260370511
- Miroliaei, M. and Nemat-Gorgani, M. (2001) Sugars protect native and apo yeast alcohol dehydrogenase against irreversible thermoinactivation. Enzyme. Microb. Technol. 29, 554-559. https://doi.org/10.1016/S0141-0229(01)00428-8
- Mitaku, S., Ishido, S., Itoh, H., Kataoka, R. and Saito, N. (1991) Hydrophobic core of molten globule state of bovine carbonic anhydrase B. Biophy. Chem. 40, 217-222. https://doi.org/10.1016/0301-4622(91)80021-I
- Nemat-Gorgani, M. and Karimian, K. (1982) Non-ionic adsorptive immobilization of proteins to palmityl-substituted Sepharose 4B. Eur. J. Biochem. 123, 601-609. https://doi.org/10.1111/j.1432-1033.1982.tb06575.x
- Ptitsyn, O. B., Pain, R. H., Semisotnov, G. V., Zerovnik, E. and Razgulyaev, O. I. (1990) Evidence for a molten globule state as a general intermediate in protein folding. FEBS Lett. 262, 20-24. https://doi.org/10.1016/0014-5793(90)80143-7
- Rajaraman, K., Raman, B. and Rao, C. M. (1996) Molten-globule state of carbonic anhydrase binds to the chaperon-like ácrystallin. J. Biol. Chem. 271, 27595-27600. https://doi.org/10.1074/jbc.271.44.27595
- Scott, D. A. and Mendiv, J. R. (1941) Chemical observations on carbonic anhydrase. J. Biol .Chem. 140, 445-451.
- Thompson, R. B. and Patchan, M. W. (1995) Lifetime-based fluorescence energy transfer biosensing of zinc. Anal. Biochem. 227, 123-128. https://doi.org/10.1006/abio.1995.1260
- Thompson, R. B., Maliwal, B. P. and Zeng, H. H. (2000) Zinc biosensing with multiphoton excitation using carbonic anhydrase and improved fluorophores. J. Biomed. Optics 5, 17-22. https://doi.org/10.1117/1.429963
- Tupper, R., Watts, R. W. and Wormall, A. (1952) Some observations on the zinc in carbonic anhydrase. Biochem. J. 50, 425-429. https://doi.org/10.1042/bj0500425
- Uversky, V. N., Semisotnov, G. V., Pain, R. H. and Ptitsyn, O. B. (1992) 'All-or-none' mechanism of the molten-globule unfolding. FEBS Lett. 314, 89-92. https://doi.org/10.1016/0014-5793(92)81468-2
- Varley, P. G. and Pain, R. H. (1991) Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J. Mol. Biol. 220, 531-538. https://doi.org/10.1016/0022-2836(91)90028-5
- Waygood, E. R. (1955) Carbonic anhydrase (plant and animal). Meth Enzymol. 2, 836-846. https://doi.org/10.1016/S0076-6879(55)02312-4
- Zhang, Y. L., Zhou, J. M. and Tsou, C. L. (1993) Inactivation procedes conformation change during thermal denaturation of adenylate kinase. Biochem. Biophys. Acta 1164, 61-67. https://doi.org/10.1016/0167-4838(93)90112-5
피인용 문헌
- Hydrophobic Interactions in Complexes of Antimicrobial Peptides with Bacterial Polysaccharides vol.69, pp.6, 2007, https://doi.org/10.1111/j.1747-0285.2007.00518.x
- Thermal stability of carbonic anhydrase immobilized within polyurethane foam vol.26, pp.5, 2010, https://doi.org/10.1002/btpr.452
- Transition metal complexes of 2, 6-di ((phenazonyl-4-imino) methyl)-4-methylphenol: Structure and biological evaluation vol.46, pp.5, 2011, https://doi.org/10.1016/j.ejmech.2011.02.012
- Spectroscopic studies on the interaction between Pr(III) complex of an ofloxacin derivative and bovine serum albumin or DNA vol.78, pp.1, 2011, https://doi.org/10.1016/j.saa.2010.11.018
- Binding of rare earth metal complexes with an ofloxacin derivative to bovine serum albumin and its effect on the conformation of protein vol.131, pp.8, 2011, https://doi.org/10.1016/j.jlumin.2011.03.025