DOI QR코드

DOI QR Code

A Tuber Lectin from Arisaema jacquemontii Blume with Anti-insect and Anti-proliferative Properties

  • Received : 2006.03.10
  • Accepted : 2006.04.20
  • Published : 2006.07.31

Abstract

A tuber lectin from Arisaema jacquemontii Blume belonging to family Araceae was purified by employing a single step affinity chromatography using column of asialofetuin-linked amino activated silica beads and the bound lectin was eluted with 100 mM glycine-HCl buffer pH 2.5. The purified A. jacquemontii lectin (AJL) showed a single protein band with an apparent molecular mass of 13.4 kDa when submitted to SDS-polyacrylamide gel electrophoresis under reducing as well as non-reducing conditions. The native molecular mass of AJL determined by gel filtration on a Biogel P-200 column was 52 kDa and its carbohydrate content was estimated to be 3.40%. Thus AJL is a tetrameric glycoprotein. The purified lectin agglutinated erythrocytes from rabbit but not from human. Its activity was not inhibited by any of the mono- and disaccharides tested except N-acetyl-D-lactosamine having minimal inhibitory sugar concentration (MIC) 25 mM. Among the glycoproteins tested only asialofetuin was found to be inhibitory (MIC $125\;{\mu}g/mL$). A single band was obtained in native PAGE at pH 4.5 while PAGE at pH 8.3 showed two bands. Isoelectric focusing of AJL gave multiple bands in the pI range of 4.6-5.5. When incorporated in artificial diet AJL significantly affected the development of Bactrocera cucurbitae (Coquillett) larvae indicating the possibility of using this lectin in a biotechnological strategy for insect management of cucurbits. Larvae fed on artificial diet containing sub-lethal dose of AJL showed a significant decrease in acid phosphatase and alkaline phosphatase activity while esterase activity markedly increased as compared to larvae fed on diet without lectin. Out of various human cancer cell lines employed in sulphorhodamine B (SRB) assay, this lectin was found to have appreciable inhibitory effect on the in vitro proliferation of HCT-15, HOP-62, SW-620, HT-29, IMR-32, SKOV-3, Colo-205, PC-3, HEP-2 and A-549 cancer cell lines by 82, 77, 73, 70, 41, 41, 37, 29, 21 and 21% respectively.

Keywords

References

  1. Abdullaev, F. I. and de Mejia, E. G. (1997) Antitumor effects of plant lectins. Nat. Toxins 5, 157-163 https://doi.org/10.1002/19970504NT6
  2. Andrews, P. (1964) Estimation of the molecular weights of proteins by Sephadex gel filtration. Biochem. J. 91, 222-223 https://doi.org/10.1042/bj0910222
  3. Barre, A., Van Damme, E. J., Peumans, W. J. and Rouge, P. (1996) Structure-function relationship of monocot mannosebinding lectins. Plant Physiol. 112, 1531-1540 https://doi.org/10.1104/pp.112.4.1531
  4. Bollag, D. M., Rozycki, M. D. and Edelstein S. J. (1996) Isoelectric focusing in: Protein Methods, pp. 173-185, John wiley & Sons Inc., New York, USA
  5. Candy, L., Van Damme, E. J. M., Peumans, W. J., Menu-Bouaouiche, L., Erard, M. and Rouge, P. (2003) Structural and functional characterization of the GalNAc/Gal-specific lectin from the phytopathogenic ascomycete Sclerotinia sclerotiorum (Lib.). Biochem. Biophys. Res. Commun. 308, 396-402 https://doi.org/10.1016/S0006-291X(03)01406-2
  6. Carlini, C. R. and Grossi-de-Sa, M. F. (2002) Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon 40, 1515-1539 https://doi.org/10.1016/S0041-0101(02)00240-4
  7. Davis, B. J. (1964) Disc electrophoresis. II. Methods and applications to human serum proteins. Ann. New York Acad Sci. 121, 404-427 https://doi.org/10.1111/j.1749-6632.1964.tb14213.x
  8. Devorshak, C. and Roe, R. M. (1999) The role of esterase in insecticide resistance. Reviews in Toxicology 2, 501-537
  9. Eisemann, C. H., Donaldson, R. A., Pearson, R. D, ,Cadogan, L. C., Vuocolo, T. and Tellam, R. L. (1994) Larvicidal activity of lectins on Lucilio cuprina: Mechanism of action. J. Entomol. Exp. Appl. 7, 1-10
  10. Green, E. D., Adelt, G., Baenziger, J. U. ,Wilson, S. and Van Halbeek, H. (1988) Th asparagine-linked oligosaccharides on bovine fetuin. Structural analysis of N- glycanase-released oligosaccharides by 500-megahertz 1H NMR spectroscopy. J. Biol. Chem. 263, 18253-18268
  11. Gupta, J. N,. Verma, A. N. and Kashyap, R. K. (1978) An improved method for mass rearing of melon fruit fly Dacus cucurbitae Coquillett. Indian J. Entomol. 40, 470-471
  12. Hayes, C. E. and Goldstein, I. J. (1974) An b-D-Galactosylbinding lectin from Banderiaea simplicifolia seeds. J. Biol. Chem. 249, 1904-1914
  13. Katzenellenbogen, B. and Kafatos, F. C. (1971) General esterases of silkmoth moulting fluid: Preliminary characterization. J. Insect Physiol. 17, 1139-1151 https://doi.org/10.1016/0022-1910(71)90016-3
  14. Kaur, M., Singh, J., Kamboj, S. S., Singh, J., Kaur, A., Sood, S. K. and Saxena, A. K. (2005) Isolation and characterization of two N-acetyl-D-lactosamine specific lectins from tubers of Arisaema intermedium Blume and A. wallichianum Hook f. Indian J. Biochem. Biophys. 42, 34-40
  15. Kaur, M., Singh, K., Rup, P. J., Saxena, A. K., Khan, R. H., Ashraf, M. T., Kamboj, S. S. and Singh, J. (2006) A tuber lectin from Arisaema helleborifolium Schott with anti-insect activity against melon fruit fly Bactrocera cucurbitae (Coquillett) and anti-cancer effect on human cancer cell lines. Arch. Biochem. Biophys. 445, 156-165 https://doi.org/10.1016/j.abb.2005.10.021
  16. Kawagishi, H., Nomura, A., Mizuno, T., Kimura, A. and Chiba, S. (1990) Isolation and characterization of a lectin from Grifola frondosa fruiting bodies. Biochim. Biophys. Acta 1034, 247-252 https://doi.org/10.1016/0304-4165(90)90045-X
  17. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680-685
  18. Lin, J. Y. and Chou, T. B. (1984) Isolation and characterization of a lectin from edible mushroom Volvariella volvacea. J. Biochem. (Tokyo) 96, 35-40 https://doi.org/10.1093/oxfordjournals.jbchem.a134826
  19. Lowry, O. H., Rosebrough, N. J., Farr, A. R. and Randall, R. J. (1951) Protein measurements with folin-phenol reagent. J. Biol. Chem. 193, 265-275
  20. MC Intyre, R.J. (1971) A method for measuring activities of acid phosphatases separated by acrylamide gel electrophoresis. Biochem. Genet. 5, 45-50 https://doi.org/10.1007/BF00485729
  21. MO, H., Evers, K. G., Winter, D. L., Peumans, W. J. and Van Damme, E. J. M. (1999) Xanthosoma sagittifolium tubers contain a lectin with two different types of carbohydratebinding sites. J. Biol. Chem. 274, 33300-33305 https://doi.org/10.1074/jbc.274.47.33300
  22. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paul, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Wolff, A. V., Goodrich, M. G., Campbell, H., Mayo, J. and Boyd, M. (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J. Nat. Can. Inst. 83, 757-766 https://doi.org/10.1093/jnci/83.11.757
  23. Nelson D. L. and Cox M. N. (2001) The three dimensional structure of proteins in: Lehninger Principles of Biochemistry, pp. 159-202, Macmillon Worth Publishers, New York, USA
  24. Paulova, M., Entlicher, G., Ticha, M., Kostir, J. V. and Kocourek, J. (1971) Studies of phytohemagglutinins.VII. Effect of Mn$^{2+}$ and Ca$^{2+}$ on hemagglutination of phytohemagglutinin of Pisum sativum L. Biochem. Biophys. Acta 237, 513-518 https://doi.org/10.1016/0304-4165(71)90271-6
  25. Peumans, W. J. and Van Damme, E. J. M. (1995) Lectins as plant defence proteins. Plant Physiol. 109, 347-352 https://doi.org/10.1104/pp.109.2.347
  26. Reisfeld, R. A., Lewis, O. J. and Williams, D. E. (1962) Disc electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature 145, 281-283
  27. Robertson, E. F., Dannelly, H. K., Malloy, P. J. and Reeve, H. C. (1987) Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Ann. Biochem. 167, 290-294 https://doi.org/10.1016/0003-2697(87)90166-7
  28. Rup, P. J., Sohal, S. K., Dhillon, M. K., Sohi, R., Gurm, S. K., Sandhu, N., Dhingra, P., Wadha, S. K. and Kaur, G. (1999) Esterase activity in Lipaphis erysimi (Kalt) in response to seven PGRs. J. Applied Zool. Res. 10, 94-97
  29. Shangary, S., Singh, J., Kamboj, S. S., Kamboj, K. K. and Sandhu, R. S. (1995) Purification and properties of four monocot lectins from the family Araceae. Phytochemistry 40, 449-455 https://doi.org/10.1016/0031-9422(95)00229-Z
  30. Sharon, N. and Lis, H. (1990) Legume proteins- a large family of homologous proteins. FASEB J. 4, 3198-3208 https://doi.org/10.1096/fasebj.4.14.2227211
  31. Spiro, R. G. (1966) Analysis of sugars found in glycoproteins. Meth. in Enzymol. 8, 3-26 https://doi.org/10.1016/0076-6879(66)08005-4
  32. Srivastava, B. G. (1975) A chemically defined diet for Dacus cucurbitae (Coq.) larvae under aseptic conditions. Entomol. News Lett. 5, 24
  33. Tabary, F., Font, J. and Bourrillon, R. (1987) Isolation molecular and biological properties of a lectin from rice embryo: relationship with wheat germ agglutinin properties. Arch. Biochem. Biophys. 259, 79-88 https://doi.org/10.1016/0003-9861(87)90472-3
  34. Van Damme, E. J. M., Goldstein, I. J., Vercammen, G., Vuylsteke, J. and Peumans, W. J. (1992) Lectins of members of the Amaryllidaceae are encoded by multigene families which show extensive homologies. Physiol. Planta 86, 245-252 https://doi.org/10.1034/j.1399-3054.1992.860209.x
  35. Van Damme, E. J. M., Goossens, K., Smeets, K. Van Leuven, F., Verhaert, P. and Peumans, W. J. (1995) The major tuber storage protein of Araceae species is a lectin: characterization and molecular cloning of the lectin from Arum maculatum L. Plant Physiol 107, 1147-1158 https://doi.org/10.1104/pp.107.4.1147

Cited by

  1. A mannose/glucose-specific lectin from Chinese evergreen chinkapin (Castanopsis chinensis) vol.1780, pp.9, 2008, https://doi.org/10.1016/j.bbagen.2008.05.007
  2. Antiproliferation and apoptosis of human tumor cell lines by a lectin (AMML) of Astragalus mongholicus vol.16, pp.6-7, 2009, https://doi.org/10.1016/j.phymed.2008.12.024
  3. Studies on novel 4β-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxins as potential anticancer agents vol.43, pp.10, 2008, https://doi.org/10.1016/j.ejmech.2007.09.015
  4. Purification, characterization and toxicity of a mannose-binding lectin from the seeds ofTreculia africanaplant vol.91, pp.7, 2009, https://doi.org/10.1080/02772240902732357
  5. Anti-insect potential of a lectin from the tuber, Dioscorea mangenotiana towards Eldana saccharina (Lepidoptera: Pyralidae) vol.8, pp.3, 2016, https://doi.org/10.5897/JABSD2015.0249
  6. Antimetabolic effect of phytohemagglutinin to the grain aphidSitobion avenaefabricius vol.63, pp.3, 2012, https://doi.org/10.1556/ABiol.63.2012.3.4
  7. Purification of melibiose-binding lectins from two cultivars of Chinese black soybeans vol.40, pp.12, 2008, https://doi.org/10.1111/j.1745-7270.2008.00488.x
  8. Conidiogenic effects of mannose-binding lectins isolated from cotyledons of red kidney bean (Phaseolus vulgaris) on Alternaria alternata vol.72, pp.1, 2011, https://doi.org/10.1016/j.phytochem.2010.11.002
  9. Entomotoxic action of jackbean lectin (Con A) in bird cherry-oat aphid through the effect on insect enzymes vol.9, pp.1, 2014, https://doi.org/10.1080/17429145.2013.848947
  10. Lethal protein in mass consumption edible mushroom Agrocybe aegerita linked to strong hepatic toxicity vol.90, 2014, https://doi.org/10.1016/j.toxicon.2014.08.066
  11. Physicochemical and kinetic characteristics of rhodanese from the liver of African catfish Clarias gariepinus Burchell in Asejire lake vol.36, pp.3, 2010, https://doi.org/10.1007/s10695-009-9328-4
  12. Insecticidal action of phytohemagglutinin (PHA) against the grain aphid, Sitobion avenae vol.100, pp.1, 2011, https://doi.org/10.1016/j.pestbp.2011.02.006
  13. Magnetic beads-assisted mild enrichment procedure for weak-binding lectins vol.411, pp.1, 2011, https://doi.org/10.1016/j.ab.2010.12.023
  14. Biochemical characterization and kinetic studies on a purified yellow laccase from newly isolated Aureobasidium pullulans NAC8 obtained from soil containing decayed plant matter vol.14, pp.1, 2016, https://doi.org/10.1016/j.jgeb.2016.05.004
  15. Antioxidant and Immunomodulatory Potential of Cobra lily Species of North-western Himalayan Region: A Comparative Analysis vol.4, pp.3, 2014, https://doi.org/10.1080/22311866.2014.936905
  16. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume vol.9, pp.4, 2015, https://doi.org/10.1016/j.jtusci.2014.11.001
  17. Effects of extract of soapnut Sapindus emarginatus on esterases and phosphatases of the vector mosquito, Aedes aegypti (Diptera: Culicidae) vol.118, pp.1, 2011, https://doi.org/10.1016/j.actatropica.2011.01.003
  18. Purification and characterization of a Ca2+-dependent novel lectin fromNymphaea nouchalituber with antiproliferative activities vol.31, pp.6, 2011, https://doi.org/10.1042/BSR20100126
  19. Crystal structure of a plant albumin from Cicer arietinum (chickpea) possessing hemopexin fold and hemagglutination activity vol.241, pp.5, 2015, https://doi.org/10.1007/s00425-014-2236-6
  20. Receptors of Garlic (Allium sativum) Lectins and Their Role in Insecticidal Action vol.31, pp.6, 2012, https://doi.org/10.1007/s10930-012-9423-8
  21. Lectins: production and practical applications vol.89, pp.1, 2011, https://doi.org/10.1007/s00253-010-2892-9